

Advanced Distributed Learning Initiative

Sharable Content Object
Reference Model

(SCORM®) 2004 2nd Edition
Addendum

Version 1.0

September 15, 2004

© 2004 Advanced Distributed Learning.
All Rights Reserved.

This page intentionally left blank.

© 2004 Advanced Distributed Learning.
All Rights Reserved.

Advanced Distributed Learning

SCORM 2004 2nd Edition
Addendum

Version 1.0

Available at ADLNet.org
(http://www.adlnet.org/)

For questions and comments visit the ADL Help & Info
Center at ADLNet.

SCORM 2004 2nd Edition Addendum Version 1.0 i
© 2004 Advanced Distributed Learning.

All Rights Reserved.

This page intentionally left blank.

ii SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

Table of Contents

INTRODUCTION.. 1-1
1.1. Purpose .. 1-3
SCORM 2004 DEFECT ADDENDA... 2-1
2.1. Handling of Invalid SetValue() Requests for Data Model Element Collections.................................. 2-3
2.2. Ambiguous Pseudo-Code in Case #4 of Choice Sequencing Request Process 2-5
2.3. Misevaluation of Traversal Direction... 2-11
2.4. Measure Rollup Should not be Applied to Leaf Activities .. 2-14
2.5. Invalid Default Value defined for the measureSatisfactionIfActive attribute 2-16
2.6. Incorrect SPM for the <dataFromLMS> Element.. 2-17
2.7. Handling of Reserved Delimiters ... 2-18
2.8. Deprecating the adlcp:persistState Attribute .. 2-23
SCORM 2004 CLARIFICATION/ENHANCEMENT ADDENDA .. 3-1
3.1. Ambiguous information defined in the language_type Data Type... 3-3
3.2. Clarification of Learner Session Initialization Requirements .. 3-4
3.3. Setting the Current Activity to None.. 3-6

SCORM 2004 2nd Edition Addendum Version 1.0 iii
© 2004 Advanced Distributed Learning.

All Rights Reserved.

This page intentionally left blank.

iv SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

Introduction

SCORM 2004 2nd Edition Addendum Version 1.0 1-1
© 2004 Advanced Distributed Learning.

All Rights Reserved.

This page intentionally left blank.

1-2 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

1.1. Purpose

The purpose of this document is to track all reported issues with SCORM 2004 that
would require updates to the SCORM 2004 2nd Edition documentation suite. This
document captures those issues and describes the corrections needed to address them.
The information contained in this document supersedes information contained in the
SCORM 2004 2nd Edition documentation suite. Vendors should adhere to all changes to
SCORM 2004 2nd Edition as described in this document. The SCORM 2004
Conformance Test Suite will be updated to reflect the changes described in this
document.

This document should be used in conjunction with the SCORM 2004 2nd Edition until a
new edition of SCORM 2004 is published by ADL. This document will be updated to
include additional corrections should they become known.

Please submit any additional known issues with the SCORM 2004 2nd Edition to the
ADL Technical Team via the Help & Info Center on ADLNet.org.

This document is divided into three major sections. Section 1 explains the purpose of the
SCORM 2004 2nd Edition addendum. Section 2 describes addenda that are related to
defects in the SCORM 2004 2nd Edition. The types of defects that fall into this category
are those that may impact conformance to SCORM 2004, depending on current
implementations. Section 3 describes addenda that are clarifications or enhancements
that do not impact SCORM 2004 conformance.

SCORM 2004 2nd Edition Addendum Version 1.0 1-3
© 2004 Advanced Distributed Learning.

All Rights Reserved.

This page intentionally left blank.

1-4 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

 SCORM 2004 Defect Addenda

SCORM 2004 2nd Edition Addendum Version 1.0 2-1
© 2004 Advanced Distributed Learning.

All Rights Reserved.

This page intentionally left blank.

2-2 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

2.1. Handling of Invalid SetValue() Requests for Data
Model Element Collections

The SCORM Run-Time Environment (RTE) Version 1.3.1 does not clearly describe how
to handle invalid SetValue() requests invoked against data model elements in a “to-be”
created record of a data model element collection. More specifically, there is no specific
statement of when a data model element record should be created in response to a
SetValue() request invoked against one of its children, increasing the count of its
containing collection.

For example, assume that the value for cmi.comments_from_learner._count is zero
(the SCO has not set any comments from learner) and the SCO attempts to make the
following SetValue() request:

SetValue(“cmi.comments_from_learner.0.comment”,”{lang=}”)

This SetValue() request is invalid because the value provided for the language delimiter
is not a valid language_type – it cannot be an empty string (refer to the SCORM RTE
Version 1.3.1, Section 4.1.1.7: Data Types for requirements of a valid language_type).
In this case, the LMS is required to return false and set the API error code to 406 –
Data Model Element Type Mismatch.

This issue is experienced when continuing the example. SCORM does not clearly define
how an LMS should respond to the following GetValue() requests when they are
invoked immediately following the previous SetValue() request.

GetValue(“cmi.comments_from_learner.0.comment)

GetValue(“cmi.comments_from_learner._count)

2.1.1. Rationale for Change

Invalid SetValue() requests (regardless of the data model element) always result in an
LMS returning false and setting the API error code. The LMS is required to not alter
the state of the data model element’s value. In the case where these SetValue()
requests are invoked against data model elements in a “to-be” created record, not altering
the state of the data model element implies that no record is created and that the
containing collection’s size does not change.

2.1.2. SCORM Update

Section 4.1.1.3 Handling Collections found in the SCORM Run-Time Environment
Version 1.1.3 will be updated to include the following required behavior:

SCORM 2004 2nd Edition Addendum Version 1.0 2-3
© 2004 Advanced Distributed Learning.

All Rights Reserved.

Failure to set a data model element in a “to-be” created data model record does
not result in any data being persisted and does not increase the containing
collection size.

The following child data model elements are affected by this change. If any of these
elements is set successfully, it would cause a newly created record to be added to the
containing collection, increasing the collection’s count by 1.

• cmi.objectives.n.id

• cmi.interactions.n.id

• cmi.interactions.n.objectives.n.id

• cmi.comments_from_learner.n.comment

• cmi.comments_from_learner.n.location

• cmi.comments_from_learner.n.timestamp

When an LMS receives an invalid SetValue() request against one of these data model
elements, the LMS will return false and set the appropriate API error code. The size of
containing collection shall not be incremented. If a _count request is made prior to the
invalid SetValue() request and a _count request is made immediately after the invalid
SetValue() request, then the value returned by both calls shall be identical (i.e., the
collection size has not changed).

An update will be made to define that if an LMS receives a GetValue() request
immediately following an invalid SetValue() request, then the behavior shall be:

(1) Return an empty characterstring (“”)
(2) Set the API Error Code to 301 – General Get Failure

2-4 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

2.2. Ambiguous Pseudo-Code in Case #4 of Choice
Sequencing Request Process

This addendum addresses a discrepancy found in Choice Sequencing Request Process
(Section SB.2.9) of the SCORM Sequencing and Navigation (SN) Version 1.3.1. The
discrepancy can be found in Case #4 which starts on line 11. Case #4 deals with the
Choice Sequencing Request scenario where the target activity is an ancestor of the
Current Activity. In this case, the Activity Tree traversal will be up the “active” path
rather than across the tree; however, the pseudo code includes an evaluation of
Constrained Choice attribute that requires an ambiguous traversal either Backward or
Forward in the Activity Tree relative to the constrained activity.

2.2.1. Rationale for Change

When the target of a choice navigation request is an ancestor of the current activity (Case
#4), the Constrained Choice attribute will have no effect. In Case #4, only the target or
its immediate “next” activity (if the target is a cluster – Section SB.2.9, line 14), could
possibly be identified for delivery, which is the intended effect of the Constrained Choice
Attribute. In this case, the evaluation of Constrained Choice adds no value and
potentially leads to an ambiguous traversal direction.

2.2.2. SCORM Update

The evaluation of the Constrained Choice attribute is unnecessary and ambiguous when
performed during Case #4 of the Sequencing Choice Process. The Choice Sequencing
Request Process (Section SB.2.9) will be updated to delete the pseudo-code that
references the constrained activity in Case #4 (this includes lines 11.3, 11.4.2.*, and
11.5.*).

The updated Choice Sequencing Process is reproduced in whole for easy reference.

Choice Sequencing Request Process [SB.2.9] (for a target activity; may return a delivery request; may
change the Current Activity; may return an exception code):
Reference: Activity is Active AM.1.1; Activity is Suspended AM.1.1; Available Children AM.1.1; Check
Activity Process UP.5; Choice Activity Traversal Subprocess SB.2.4; Current Activity AM.1.2; End
Attempt Process UP.4; Flow Subprocess SB.2.3; Sequencing Control Mode Choice SM.1; Sequencing
Control Choice Exit SM.1; Sequencing Rules Check Process UP.2; Terminate Descendent Attempts Process
UP.3; adlseq:constrainedChoice SCORM SN; adlseq:preventActivation SCORM SN
1. If there is no target activity Then There must be a

target activity for
choice

1.1. Exit Choice Sequencing Request Process (Delivery Request: n/a;
Exception: SB.2.9-1)

Nothing to deliver

 End If
2. If the target activity is not the root of the activity tree Then

SCORM 2004 2nd Edition Addendum Version 1.0 2-5
© 2004 Advanced Distributed Learning.

All Rights Reserved.

2.1. If the Available Children for the parent of the target activity does not
contain the target activity Then

The activity is
currently not
available

2.1.1. Exit Choice Sequencing Request Process (Delivery Request: n/a;
Exception: SB.2.9-2)

Nothing to deliver

 End If
 End If
3. Form the activity path as the ordered series of activities from the root of the

activity tree to the target activity, inclusive

4. For each activity in the activity path
4.1. Apply the Sequencing Rules Check Process to the activity and the Hide

from Choice sequencing rules
Cannot choose
something that is
hidden

4.2. If the Sequencing Rules Check Process does not return Nil Then
4.2.1. Exit Choice Sequencing Request Process (Delivery Request: n/a;

Exception: SB.2.9-3)
Nothing to deliver

 End If
 End For
5. If the target activity is not the root of the activity tree Then
5.1. If the Sequencing Control Mode Choice for the parent of the target

activity is False Then
Confirm that
control mode
allow ‘choice’ of
the target

5.1.1. Exit Choice Sequencing Request Process (Delivery Request: n/a;
Exception: SB.2.9-4)

Nothing to deliver

 End If
 End If
6. If the Current Activity is Defined Then Has the

sequencing
session already
begun?

6.1. Find the common ancestor of the Current Activity and the target activity
7. Else
7.1. Set common ancestor is the root of the activity tree No, choosing the

target will start the
sequencing
session

 End If
8. Case: Current Activity and target activity are identical Case #1 - select

the current activity
8.1. Break All Cases Nothing to do in

this case
 End Case
9. Case: Current Activity and the target activity are siblings Case #2 - same

cluster; move
toward the target
activity

9.1. Form the activity list as the ordered sequence of activities from the
Current Activity to the target activity, exclusive of the target activity

We are attempted
to walk toward the
target activity.
Once we reach the
target activity, we
don’t need to test
it.

2-6 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

9.2. If the activity list is Empty Then Nothing to choose
9.2.1. Exit Choice Sequencing Request Process (Delivery Request: n/a;

Exception: SB.2.9-5)
Nothing to deliver

 End If
9.3. If the target activity occurs after the Current Activity in preorder

traversal of the activity tree Then

9.3.1. traverse is Forward
9.4. Else
9.4.1. traverse is Backward
 End If
9.5. For each activity on the activity list
9.5.1. Apply the Choice Activity Traversal Subprocess to the activity in

the traverse direction

9.5.2. If the Choice Activity Traversal Subprocess returns False Then
9.5.2.1. Exit Choice Sequencing Request Process (Delivery Request:

n/a; Exception: the exception identified by the Choice Activity
Traversal Subprocess)

Nothing to deliver

 End If
 End For
9.6. Break All Cases
 End Case
10. Case: Current Activity and common ancestor are the same Or Current

Activity is Not Defined
Case #3 - path to
the target is
forward in the
activity tree

10.1. Form the activity path as the ordered series of activities from the
common ancestor to the target activity, exclusive of the target activity

10.2. If the activity path is Empty Then
10.2.1. Exit Choice Sequencing Request Process (Delivery Request: n/a;

Exception: SB.2.9-5)
Nothing to deliver

 End If
10.3. For each activity on the activity path
10.3.1. Apply the Choice Activity Traversal Subprocess to the activity in

the Forward direction

10.3.2. If the Choice Activity Traversal Subprocess returns False Then
10.3.2.1. Exit Choice Sequencing Request Process (Delivery Request:

n/a; Exception: the exception identified by the Choice Activity
Traversal Subprocess)

Nothing to deliver

 End If
10.3.3. If Activity is Active for the activity is False And (the activity is Not

the common ancestor And adlseq:preventActivation for the activity
is True) Then

If the activity
being considered
is not already
active, make sure
we are allowed to
activate it

10.3.3.1. Exit Choice Sequencing Request Process (Delivery Request:
n/a; Exception: SB.2.9-6)

Nothing to deliver

 End If
 End For
10.4. Break All Cases
 End Case
11. Case: Target activity is the common ancestor of the Current Activity Case #4 - path to

the target is
backward in the

SCORM 2004 2nd Edition Addendum Version 1.0 2-7
© 2004 Advanced Distributed Learning.

All Rights Reserved.

activity tree
11.1. Form the activity path as the ordered series of activities from the

Current Activity to the target activity, inclusive

11.2. If the activity path is Empty Then
11.2.1. Exit Choice Sequencing Request Process (Delivery Request: n/a;

Exception: SB.2.9-5)
Nothing to deliver

 End If
11.3. For each activity on the activity path
11.3.1. If the activity is not the last activity in the activity path Then
11.3.1.1. If the Sequencing Control Choice Exit for the activity is False

Then
Make sure an
activity that
should not exit
will exit if the
target is delivered.

11.3.1.1.1. Exit Choice Sequencing Request Process (Delivery
Request: n/a; Exception: SB.2.9-7)

Nothing to deliver

 End If
 End If
 End For
11.4. Break All Cases
 End Case
12. Case: Target activity is forward from the common ancestor activity Case #5 - target is

a descendent
activity of the
common ancestor

12.1. Form the activity path as the ordered series of activities from the
Current Activity to the common ancestor, inclusive

12.2. If the activity path is Empty Then
12.2.1. Exit Choice Sequencing Request Process (Delivery Request: n/a;

Exception: SB.2.9-5)
Nothing to deliver

 End If
12.3. Set constrained activity to Undefined
12.4. For each activity on the activity path Walk up the tree

to the common
ancestor

12.4.1. If the activity is not the last activity in the activity path Then
12.4.1.1. If the Sequencing Control Choice Exit for the activity is False

Then
Make sure an
activity that
should not exit
will exit if the
target is delivered

12.4.1.1.1. Exit Choice Sequencing Request Process (Delivery
Request: n/a; Exception: SB.2.9-7)

Nothing to deliver

 End If
 End If
12.4.2. If constrained activity is Undefined Then Find the closest

constrained
activity to the
current activity

12.4.2.1. If adlseq:constrainedChoice for the activity is True Then
12.4.2.1.1. Set constrained activity to activity
 End If
 End If
 End For

2-8 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

12.5. If constrained activity is Defined Then
12.5.1. If the target activity is Forward in the activity tree relative to the

constrained activity Then

12.5.1.1. traverse is Forward ‘Flow’ in a
forward direction
to see what
activity comes
next

12.5.2. Else
12.5.2.1. traverse is Backward ‘Flow’ in a

backward
direction to see
what activity
comes next

 End If
12.5.3. Apply the Choice Flow Subprocess to the constrained activity in

the traverse direction

12.5.4. Set activity to consider to the activity identified by the Choice Flow
Subprocess

12.5.5. If the target activity is Not an available descendent of the activity
to consider And (the target activity is Not the constrained activity
Or the target activity is Not the activity to consider) Then

Make sure the
target activity is
within the set of
‘flow’ constrained
choices

12.5.5.1. Exit Choice Sequencing Request Process (Delivery Request:
n/a; Exception: SB.2.9-8)

 End If
 End If
12.6. Form the activity path as the ordered series of activities from the

common ancestor to the target activity, exclusive of the target activity

12.7. If the activity path is Empty Then
12.7.1. Exit Choice Sequencing Request Process (Delivery Request: n/a;

Exception: SB.2.9-5)
Nothing to deliver

 End If
12.8. If the target activity is forward in the activity tree relative to the Current Walk toward the

target activity Activity Then
12.8.1. For each activity on the activity path
12.8.1.1. Apply the Choice Activity Traversal Subprocess to the activity

in the Forward direction

12.8.1.2. If the Choice Activity Traversal Subprocess returns False
Then

12.8.1.2.1. Exit Choice Sequencing Request Process (Delivery
Request: n/a; Exception: the exception identified by the
Choice Activity Traversal Subprocess)

Nothing to deliver

 End If
12.8.1.3. If Activity is Active for the activity is False And (the activity is

Not the common ancestor And adlseq:preventActivation for
the activity is True) Then

If the activity
being considered
is not already
active, make sure
we are allowed to
activate it

12.8.1.3.1. Exit Choice Sequencing Request Process (Delivery
Request: n/a; Exception: SB.2.9-6)

Nothing to deliver

 End If

SCORM 2004 2nd Edition Addendum Version 1.0 2-9
© 2004 Advanced Distributed Learning.

All Rights Reserved.

 End For
12.9. Else
12.9.1. For each activity on the activity path
12.9.1.1. If Activity is Active for the activity is False And (the activity is

Not the common ancestor And adlseq:preventActivation for
the activity is True) Then

If the activity
being considered
is not already
active, make sure
we are allowed to
activate it

12.9.1.1.1. Exit Choice Sequencing Request Process (Delivery
Request: n/a; Exception: SB.2.9-6)

Nothing to deliver

 End If
 End For
 End If
12.10. Break All Cases
 End Case
13. If the target activity is a leaf activity Then
13.1. Exit Choice Sequencing Request Process (Delivery Request: the target

activity; Exception: n/a)

 End If
14. Apply the Flow Subprocess to the target activity in the Forward direction

with consider children equal to True
The identified
activity is a
cluster. Enter the
cluster and
attempt to find a
descendent leaf to
deliver

15. If the Flow Subprocess returns False Then Nothing to
deliver, but we
succeeded in
reaching the target
activity - move the
current activity

15.1. Apply the Terminate Descendent Attempts Process to the common
ancestor

15.2. Apply the End Attempt Process to the common ancestor
15.3. Set the Current Activity to the target activity
15.4. Exit Choice Sequencing Request Process (Delivery Request: n/a;

Exception: SB.2.9-9)
Nothing to deliver

16. Else
16.1. Exit Choice Sequencing Request Process (Delivery Request: for the

activity identified by the Flow Subprocess; Exception: n/a)

 End If pseudo code for choice sequencing request process

2-10 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

2.3. Misevaluation of Traversal Direction

This addendum addresses an error discovered in the Flow Activity Traversal Subprocess
(SB.2.2) of the SCORM SN Version 1.3.1. The error prevents the proper reversal of the
flow traversal direction during the evaluation of a Previous sequencing request. This
case only occurs when a Forward Only cluster is encountered and all of its children are
skipped during the evaluation of a Previous sequencing request. In this case, the Flow
Activity Traversal Subprocess needs to switch direction twice, once to move forward
through the Forward Only cluster and then once again to continue to move backward
(honoring the original request) from the Forward Only cluster to its predecessor.

2.3.1. Rationale for Change

This error is a bug in the SCORM Sequencing pseudo code. A strict implementation of
the SCORM Sequencing pseudo code would prevent an LMS from recognizing a change
in traversal direction and from successfully passing the SCORM Sequencing
Conformance Test Case CM-3b.

2.3.2. SCORM Update

Line 3.3.1 of the Flow Activity Traversal Subprocess (SB.2.2) will be updated. The
currently referenced (local variable) “traversal direction” will be updated to “previous
traversal direction.”

The updated Flow Activity Traversal Subprocess is reproduced in whole for easy
reference.

Flow Activity Traversal Subprocess [SB.2.2] (for an activity, a traversal direction, and a previous traversal
direction; returns the ‘next’ activity in a directed traversal of the activity tree and True if the activity can be
delivered; may return an exception code):
Reference: Check Activity Process UP.5; Flow Activity Traversal Subprocess SB.2.2; Flow Tree Traversal
Subprocess SB.2.1; Sequencing Control Flow SM.1; Sequencing Rules Check Process UP.2
1. If Sequencing Control Flow for the parent of the activity is False Then Confirm that

‘flow’ is enabled
1.1. Exit Flow Activity Traversal Subprocess (Deliverable: False; Next

Activity: the activity; Exception: SB.2.2-1)

 End If
2. Apply the Sequencing Rules Check Process to the activity and its Skipped

sequencing rules

3. If the Sequencing Rules Check Process does not return Nil Then Activity is skipped,
try to go to the
‘next’ activity

3.1. Apply the Flow Tree Traversal Subprocess to the activity in the
traversal direction and the previous traversal direction with consider
children equal to False

3.2. If the Flow Tree Traversal Subprocess does not identify an activity

SCORM 2004 2nd Edition Addendum Version 1.0 2-11
© 2004 Advanced Distributed Learning.

All Rights Reserved.

Then
3.2.1. Exit Flow Activity Traversal Subprocess (Deliverable: False; Next

Activity: the activity; Exception: exception identified by the Flow
Tree Traversal Subprocess)

3.3. Else
3.3.1. If the previous traversal direction is Backward And the Traversal

Direction returned by the Flow Tree Traversal Subprocess is
Backward Then

Make sure the
recursive call is
considers the
correct direction

3.3.1.1. Apply the Flow Activity Traversal Subprocess to the activity
identified by the Flow Tree Traversal Subprocess in the
traversal direction and a previous traversal direction of n/a

Recursive call –
make sure the
‘next’ activity is
OK

3.3.2. Else
3.3.2.1. Apply the Flow Activity Traversal Subprocess to the activity

identified by the Flow Tree Traversal Subprocess in the
traversal direction and a previous traversal direction of
previous traversal direction

Recursive call –
make sure the
‘next’ activity is
OK

 End If
3.3.3. Exit Flow Activity Traversal Subprocess - (Return the results of the

recursive Flow Activity Traversal Subprocess)
Possible exit from
recursion

 End If
 End If
4. Apply the Check Activity Process to the activity Make sure the

activity is allowed
5. If the Check Activity Process returns True Then
5.1. Exit Flow Activity Traversal Subprocess (Deliverable: False; Next

Activity: the activity; Exception: SB.2.2-2)

 End If
6. If the activity is not a leaf node in the activity tree Then Cannot deliver a

non-leaf activity;
enter the cluster
looking for a leaf

6.1. Apply the Flow Tree Traversal Subprocess to the activity in the
traversal direction and a previous traversal direction of n/a with
consider children equal to True

6.2. If the Flow Tree Traversal Subprocess does not identify an activity
Then

6.2.1. Exit Flow Activity Traversal Subprocess (Deliverable: False; Next
Activity: the activity; Exception: exception identified by the Flow
Tree Traversal Subprocess)

6.3. Else
6.3.1. If the traversal direction is Backward And the traversal direction

returned by the Flow Tree Traversal Subprocess is Forward Then
Check if we are
flowing backward
through a forward
only cluster - must
move forward
instead

6.3.1.1. Apply the Flow Activity Traversal Subprocess to the activity
identified by the Flow Tree Traversal Subprocess in the
Forward direction with the previous traversal direction of
Backward

Recursive call –
Make sure the
identified activity
is OK

6.3.2. Else
6.3.2.1. Apply the Flow Activity Traversal Subprocess to the activity Recursive call –

2-12 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

identified by the Flow Tree Traversal Subprocess in the
traversal direction and a previous traversal direction of n/a

Make sure the
identified activity
is OK

 End If
6.3.3. Exit Flow Activity Traversal Subprocess - (Return the results of

the recursive Flow Activity Traversal Subprocess)
Possible exit from
recursion

 End If
 End If
7. Exit Flow Activity Traversal Subprocess (Deliverable: True; Next

Activity: the activity; Exception: n/a)
Found a leaf

 pseudo code for flow activity traversal subprocess

SCORM 2004 2nd Edition Addendum Version 1.0 2-13
© 2004 Advanced Distributed Learning.

All Rights Reserved.

2.4. Measure Rollup Should not be Applied to Leaf
Activities

This addendum addresses a side effect discovered in the Overall Rollup Process (RB.1.5)
found in the SCORM SN Version 1.3.1. The side effect discovered prevents scores
reported by SCOs from being utilized during sequencing evaluations. Section 4.6.1 of
the SCORM SN Version 1.3.1 defines when the Overall Rollup Process is applied
through its extended rollup process and some rules constraining how that rollup is
evaluated. Each time the Overall Rollup Process is invoked, it applies the various rollup
subprocesses to each activity along the “active path” – the path from the Current Activity
(typically a leaf) and the root of the Activity Tree. For each activity, even a Current
Activity that happens to be a leaf, the Measure Rollup Process (RB.1.1) is applied.
However, the purpose of the Measure Rollup Process is to aggregate (rollup) the
measures of the target activity’s children. If none of the activity’s children have a
measure or if the activity has no children, the resulting measure is “unknown.”

2.4.1. Rationale for Change

A strict implementation of the SCORM Sequencing pseudo code would result in all
delivered leaf activities having a measure of “unknown” because the Measure Rollup
Process would interpret the lack of counted measures as an indication that the rolled up
measure should be “unknown” (RB.1.1, line 5.2.1). For sequencing purposes, the
“unknown” value would be used instead of any measure provided by a SCO
(cmi.score.scaled), defeating the intent of mapping SCORM Run-Time Data to the
associated activity’s tracking data. The net result would prevent an LMS from
successfully passing several of the measure-based SCORM Sequencing Conformance
Test Cases (MS-*).

2.4.2. SCORM Update

Although Section 4.6.1 of the SCORM SN Version 1.3.1 states that “Rollup rules have no
effect if defined on a leaf activity – there is nothing to rollup”, this instruction could be
interpreted as applying only to Rollup Rule Descriptions, as defined in the Sequencing
Definition Model, and not to general measure rollup. To ensure that there is no
ambiguity in defined sequencing behaviors, the following bullet will be added to the
SCORM SN Version 1.3.1 in Section 4.6.1:

• Measure rollup is not applied to leaf activities.

In addition, a clause will be added to the Overall Rollup Process (RB.1.5) that applies to
line 3.1. The clause will ensure that the Measure Rollup Process (RB.1.1) is not applied
to leaf activities. This change is normative behavior and will enforce that all
implementation will utilize the measure reported by a SCO for sequencing purposes.

2-14 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

The updated Overall Rollup Process is reproduced in whole for easy reference.

Overall Rollup Process [RB.1.5] (for an activity; may change the tracking information for the activity and
its ancestors):
Reference: Activity Progress Rollup Process RB.1.3; Measure Rollup Process RB.1.1; Objective Rollup
Process RB.1.2; Tracked SM.11; Tracking Model TM
1. Form the activity path as the ordered series of activities from the root of the

activity tree to the activity, inclusive, in reverse order.

2. If the activity path is Empty Then
2.1. Exit Overall Rollup Process Nothing to rollup
 End If
3. For each activity in the activity path
3.1. If the activity has children Then Only apply

Measure Rollup to
non-leaf activities

3.1.1. Apply the Measure Rollup Process to the activity Rollup the
activity’s measure

 End If
3.2. Apply the appropriate Objective Rollup Process to the activity Apply the

appropriate
behavior described
in section RB.1.2,
based on the
activity’s defined
sequencing
information

3.3. Apply the Activity Progress Rollup Process to the activity Apply the
appropriate
behavior described
in section RB.1.3,
based on the
activity’s defined
sequencing
information

 End For
4. Exit Overall Rollup Process pse code for overall rollup process udo

SCORM 2004 2nd Edition Addendum Version 1.0 2-15
© 2004 Advanced Distributed Learning.

All Rights Reserved.

2.5. Invalid Default Value defined for the
measureSatisfactionIfActive attribute

This addendum address an error found in the SCORM Content Aggregation Model
(CAM) Version 1.3.1. Section 5.1.11 <rollupConsiderations> Element contains an
optional attribute named measureSatisfactionIfActive. This attribute is defined with
an incorrect default value. The value defined in the CAM is false. The default value of
the measureSatisfactionIfActive should be true. The adlseq_v1p3.xsd correctly
identifies the default value as true.

2.5.1. Rationale for Change

This change is being made to correctly identify the default value of the
measureSatisfactionIfActive attribute.

2.5.2. SCORM Update

The measureSatisfactionIfActive attribute defined for the
<rollupConsiderations> element found in Section 5.1.11 <rollupConsiderations>
Element will be updated to change the default value of the
measureSatisfactionIfValid to true. The section will be updated as follows:

From:

• measureSatisfactionIfActive (optional, default value = false). This
attribute indicates if the measure should be used to determine satisfaction during
rollup when the activity is active. XML Data Type: xs:boolean.

To:

• measureSatisfactionIfActive (optional, default value = true). This attribute
indicates if the measure should be used to determine satisfaction during rollup
when the activity is active. XML Data Type: xs:boolean.

2-16 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

2.6. Incorrect SPM for the <dataFromLMS> Element

This addendum addresses and error in the definition of the Smallest Permitted Maximum
(SPM) for the ADL Content Packaging extension element <adlcp:dataFromLMS>. The
CAM Version 1.3.1 incorrectly defines the SPM for the <adlcp:dataFromLMS>
element’s value as 4096 characters.

2.6.1. Rationale for Change

The ADL Content Packaging Extension element, <adlcp:dataFromLMS>, is used to
initialize the cmi.launch_data SCORM Run-Time Environment Data Model element.
The cmi.launch_data data model element has a defined SPM of 4000 characters. The
IEEE Data Model Standard defines the SPM of the Launch Data element (i.e., maps to
the cmi.launch_data model element) as 4000 characters. Since the SCORM defines
that the <adlcp:dataFromLMS> element is used to initialize the cmi.launch_data data
model element, then the SPMs should match.

2.6.2. SCORM Update

The Data Type section of the <dataFromLMS> element found in Section 3.4.1.14
<dataFromLMS> Element will be updated to change the SPM for the element’s value
from 4096 characters to 4000 characters. The section will be updated as follows:

From:

Data Type: The <dataFromLMS> element is represented as a characterstring element.
The characterstring has an SPM of 4096 characters.

To:

Data Type: The <dataFromLMS> element is represented as a characterstring element.
The characterstring has an SPM of 4000 characters.

SCORM 2004 2nd Edition Addendum Version 1.0 2-17
© 2004 Advanced Distributed Learning.

All Rights Reserved.

2.7. Handling of Reserved Delimiters

This addendum addresses various issues involving the delimiters used by the SCORM
Run-Time Environment Data Model dot-notation binding:

• Discrepancy between, the types of delimiters, and

• Discrepancy between the requirements on the syntax and placement of delimiters.

2.7.1. Rationale For Change

This change is being made to remove the discrepancies between the types of delimiters,
syntax requirements for each type and placement requirements for each type. The current
text is confusing and does not clearly address these issues.

2.7.2. SCORM Update

The following updates will be made to Section 4.1.1.6 Reserved Delimiters:

• Table 4.1.1.6a will be broken up to resolve the ambiguity between the two types
of delimiters (Property and Separator delimiters).

• The section will be updated to describe the Property Delimiter Syntax
Requirements, Property Delimiter Placement Syntax, Separator Delimiter Syntax
Requirements and Separator Placement Syntax.

As mentioned above, Table 4.1.1.6a, will be broken up into two tables. Table 4.1.1.6a
will be updated to describe the Reserved Property Delimiters as follows:

Table 4.1.1.6a: Reserved Property Delimiters
Reserved Delimiter Syntax Default Value Example

{lang=<language_type>} {lang=en} {lang=en}

{case_matters=<boolean>} {case_matters=false} {case_matters=true}

{case_matters=false}

{order_matters=<boolean>} {order_matters=true} {order_matters=true}

{order_matters=false}

Because these delimiters are not required, the default value shall be assumed for those
cases where the delimiter is not specified. If the delimiters are used in the

2-18 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

characterstring, there are other requirements on placement of the delimiter and the
delimiter syntax.

Property Delimiter Syntax Requirements: The delimiter shall be treated as a constant
set of characters with the following format::

delimiter ::= “{“ + name + “=” + value + “}”

NOTE: The “{“ and “}” are required to indicate the beginning and ending portions of a
delimiter. The “=” is required to separate the name and value pieces of the delimiter.
The absences of these required characters will cause the delimiter to not be recognized by
the system; instead, the set of characters will be treated as part of the underlying
characterstring data value.

The name represents the identifier of the delimiter. The name is represented by a set of
reserved tokens:

• lang
• case_matters
• order_matters

For the {lang=<language_type>} delimiter to be recognized as the language for the
characterstring, it must be placed at the beginning of the characterstring being qualified.
If the {lang=<language_type>} delimiter is not the first set of characters, then the default
language shall be assumed.

The name token must be represented as-is (i.e., one of the following: lang,
case_matters or order_matters). Any derivatives of these tokens (e.g., padding the
token names with whitespace) will result in an unrecognized delimiter and the set of
characters will be treated as part of the underlying characterstring.

The value indicates the value for the named delimiter. The value portion of the
delimiter is restricted to the following:

• lang: Restricted to the value represented by a language_type (Refer to Section
4.1.1.7: Data Types for requirements of a language_type).

• case_matters: Restricted to either true or false
• order_matters: Restricted to either true or false

NOTE: If the value does not meet its named delimiter’s type requirements, then the
delimiter is improperly formed and the characterstring does not meet the requirements of
its type (i.e., causing a 406 – Data Type Mismatch error to occur).

Valid Examples:

• SetValue(“cmi.comments_from_learner.0.comment”,
”{lang=en}Characterstring in the English language”)

• SetValue(“cmi.interactions.0.correct_response.0.pattern”,
” {lang=en}{case_matters=true}Characterstring in the English
language where the case matters”)

SCORM 2004 2nd Edition Addendum Version 1.0 2-19
© 2004 Advanced Distributed Learning.

All Rights Reserved.

• SetValue(“cmi.comments_from_learner.0.comment”,
”{lang =fr}Characterstring in the English language”)

There is no delimiter qualifying this Characterstring – “{lang =fr}” is not
considered a language delimiter because it contains whitespace, which is not
lexically equivalent to the lang reserved delimiter. In this case, the overall
Characterstring includes {lang =fr} and is still considered valid; its default
language is English (“en”). If this SetValue call is invoked, the LMS shall set
the data model element associated with the call to
”{lang =fr}Characterstring in the English language”, set the error
code to 0 – No error and return true.

• SetValue(“cmi.comments_from_learner.0.comment”,
”{case_matters=invalid}Characterstring in the English language”)

There are no delimiters qualifying this Characterstring –
“{case_matters=invalid” is not part of the defined format for
cmi.comments_from_learner.n.comment. In this case the overall
Characterstring includes {case_matters=invalid} and is still considered valid;
its default language is English (“en”). If this SetValue call is invoked, the LMS
shall set the data model element associated with the call to
”{case_matters=invalid}Characterstring in the English language”,
set the error code to 0 – No error and return true.

Invalid Examples:

• SetValue(“cmi.interaction.0.correct_response.0.pattern”,
”{case_matters=invalid}{lang=en}Characterstring in the English
language”)

Assuming that the type of cmi.interaction.0 is fill-in, the case matters
delimiter is invalid because it requires a value of true or false. This example uses
“invalid.” Because the delimiter is improperly formed, an LMS should not set the
data model element associated with the call, set the error code to 406 – Data
Type Mismatch, and return false.

• SetValue(“cmi.comments_from_learner.0.comment”,
”{lang= fr}Characterstring in the French language”)

In this example, the lang delimiter is invalid because its value includes
whitespace, which is not part of a valid language string. Because the delimiter is
improperly formed an LMS should not set the data model element associated with
the call, set the error code to 406 – Data Type Mismatch, and return false.

Property Delimiter Placement Requirements: The delimiters are required to be placed
in specific positions within the characterstring. In those cases where a combination of
delimiters may be used, the order of the delimiters is described by the data model
element. If a default value is used (implied by the absence of a delimiter) for one of the
delimiters in the set of delimiters, then the order should still be preserved. The delimiters

2-20 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

shall be concatenated together with no whitespace permitted between the delimiters. For
example:

• {case_matters=true}{order_matters=true}

No whitespace or other characters are permitted prior to the first delimiter identified in
the characterstring. If there are no delimiters, which implies that the default values are
being used, then the value represents the characterstring used for the data model element.

NOTE: If any whitespace or other character is found at the beginning of the
characterstring, then this will cause the set of characters to be treated as part of the
underlying characterstring.

As mentioned above, Table 4.1.1.6a, will be broken up into two tables. Table 4.1.1.6b
will be updated to describe the Reserved Separator Delimiters as follows:

Table 4.1.1.6b: Reserved Separator Delimiter
Reserved Delimiter Syntax Default Value Example

[.] Not applicable,
needs to be provided

Used to separate a
pair of values that
are related for an
interaction:

1[.]a

[,] Not applicable,
needs to be provided

Used to separate a
set of values for an
interaction’s
collection:

1[.]a[,]2[.]c[,]3[.]b

[:] Not applicable,
needs to be provided

Used to represent a
separator between a
range of numeric
values:

1[:]100 – a range
where the numeric
value is between 1
and 100 (inclusive)

Separator Delimiter Syntax Requirements: The delimiter shall be treated as a constant
set of characters with the following format::

delimiter ::= “[“ + reserved_character + “]”

NOTE: The “[“ and “]” are required to indicate the beginning and ending portions of the
delimiter. The absences of these required characters will cause the delimiter to not be
recognized by the system; instead, the set of characters will be treated as part of the
underlying characterstring.

SCORM 2004 2nd Edition Addendum Version 1.0 2-21
© 2004 Advanced Distributed Learning.

All Rights Reserved.

The reserved_character represents the defined separator. The reserved_character
is represented by a set of reserved tokens:

• .
• ,
• :

NOTE: The reserved_character token must be represented as-is (i.e., one of the
following: [.], [,] or [:]). Any derivatives of these tokens (e.g., padding the
reserved_character tokens with whitespace) will result in an unrecognized delimiter and
the set of characters will be treated as part of the underlying characterstring.

Separator Delimiter Placement Requirements: The delimiters are required to be
placed in specific positions within the characterstring. The delimiter is used to separate
various data values defined by a particular data model element. For more information on
the data model elements that use these separator delimiters refer to Section 4.2 SCORM
Run-Time Environment Data Model.

2-22 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

2.8. Deprecating the adlcp:persistState Attribute

This addendum addresses the deprecation of the adlcp:persistState attribute and its
associated run-time behavior.

2.8.1. Rationale For Change

This change is being made to resolve potential run-time behavior discrepancies related to
the initialization, management, and persistence of Run-Time Data associated with a new
learner attempt on a SCO whose associated learning resource has been tagged with an
adlcp:persistState attribute equal to true.

2.8.2. SCORM Update

It has been determined through a review of the use cases related to the
adlcp:persistState attribute, that the intention of the adlcp:persistState attribute
has been superseded by the development of various e-learning standards and
specifications. The removal of the adlcp:persistState attribute will ensure that
complimentary emerging technologies and specifications can incorporate a more
comprehensive solution to the existing use cases without burdening LMSs and content
developers with, potentially complex and confusing, legacy support.

The following updates will be made to the SCORM CAM Version 1.3.1:

• Section 3.4.1.21 <resource> Element will be updated to remove the
adlcp:persistState attribute definition and declaration.

• Code Illustration 3-19 will be updated to remove the use of the adlcp:persistState
attribute.

• Table 3.5.3.a will be updated to remove the adlcp:persistState attribute from the
table.

The following updates will be made to the SCORM RTE Version 1.3.1:

• Section 2.1.1.2. will be removed from the SCORM.

• References to using Persist State will be removed from Sections 4.2.17. and
4.2.23.

The following updates will be made to the ADL Content Packaging Extension XML
Schema Definition (XSD) file – adlcp_v1p3.xsd:

SCORM 2004 2nd Edition Addendum Version 1.0 2-23
© 2004 Advanced Distributed Learning.

All Rights Reserved.

• Upon the formal release of an updated version of the SCORM documentation
suite, the adlcp_v1p3.xsd will be updated to remove the attribute declaration of
the adlcp:persistState.

2-24 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

 SCORM 2004

Clarification/Enhancement Addenda

SCORM 2004 2nd Edition Addendum Version 1.0 3-1
© 2004 Advanced Distributed Learning.

All Rights Reserved.

This page intentionally left blank.

3-2 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

3.1. Ambiguous information defined in the
language_type Data Type

This addendum addresses a clarification to the language found in Section 4.1.1.7 Data
Types of the SCORM RTE Version 1.3.1. The last paragraph found in the language_type
section is ambiguous and is not needed in this section. This section is used to describe
the specifics of the data types used by the SCORM RTE.

3.1.1. SCORM Update

The cmi.learner_preference.language data model element, found in Section 4.2.13
Learner Preference, will be updated to add the additional information found in Section
4.1.17 to further describe the special case of the language_type being an empty
characterstring. The Data Model Element Implementation Requirements section will be
updated as follows:

From:

Data Model Element Implementation Requirements:
• Data Type: language_type (SPM 250)
• Value Space: iso-646 [4]
• Format: Refer to Section 4.1.1.7: Data Types for more information on the

requirements for the format of the language_type data type. The default language
shall be “” (empty characterstring).

To:

Data Model Element Implementation Requirements:
• Data Type: language_type (SPM 250) or empty characterstring
• Value Space: iso-646 [4]
• Format: Refer to Section 4.1.1.7: Data Types for more information on the

requirements for the format of the language_type data type. The default language
shall be “” (empty characterstring).

SCORM 2004 2nd Edition Addendum Version 1.0 3-3
© 2004 Advanced Distributed Learning.

All Rights Reserved.

3.2. Clarification of Learner Session Initialization
Requirements

This addendum addresses a clarification in the behavior of the cmi.session_time and
cmi.exit RTE Data Model elements found in Section 4.2.21 Session Time and Section
4.2.8 Exit respectively, of the SCORM RTE Version 1.3.1. The clarification is centered
on the how to handle the cmi.session_time and cmi.exit value between learner
sessions.

3.2.1. SCORM Update

The LMS Behavior Requirements section of the cmi.session_time and cmi.exit data
model element found in Section 4.2.21 Session Time and Section 4.2.8 Exit respectively,
will be updated to clarify behavior on handling the cmi.session_time value between
learner sessions as follows:

Section 4.2.8 Exit

From:

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented by an LMS as write-

only.
• The value is completely controlled by the SCO. The SCO is responsible for setting

this value. If the SCO does not set the cmi.exit data model element, then the default
value (empty characterstring – “”) shall be used. If the LMS receives a request to get
the cmi.exit value, then the LMS shall adhere to the requirements listed below for API
Implementation Requirements.

To:

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented by an LMS as write-

only.
• The value is completely controlled by the SCO. The SCO is responsible for setting

this value. If the SCO does not set the cmi.exit data model element, then the default
value (empty characterstring – “”) shall be used. If the LMS receives a request to get
the cmi.exit value, then the LMS shall adhere to the requirements listed below for API
Implementation Requirements.

• If there are additional learner sessions within a learner attempt, the cmi.exit becomes
uninitialized (i.e., reinitialized to its default value of (“”) - empty characterstring) at
the beginning of each additional learner session within the learner attempt.

3-4 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

Section 4.2.21 Session Time

From:

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented by an LMS as write-

only.
• Since this data model element is implemented by the LMS as write-only, the LMS is

not responsible for initializing this data model element. It is the responsibility of the
SCO to manage this value. The LMS is only responsible for accepting a SetValue()
call to this data model element and perform the accumulation with cmi.total_time.

• Since a SCO is not required to set a value for this data model element (not required to
keep track of the session time), an LMS shall keep track of session time from the time
the LMS launches the SCO. If the SCO reports a different session time, then the
LMS shall use the session time as reported by the SCO instead of the session time as
measured by the LMS.

To:

LMS Behavior Requirements:
• The data model element is mandatory and shall be implemented by an LMS as write-

only.
• Since this data model element is implemented by the LMS as write-only, the LMS is

not responsible for initializing this data model element. It is the responsibility of the
SCO to manage this value. The LMS is only responsible for accepting a SetValue()
call to this data model element and perform the accumulation with cmi.total_time.

• Since a SCO is not required to set a value for this data model element (not required to
keep track of the session time), an LMS shall keep track of session time from the time
the LMS launches the SCO. If the SCO reports a different session time, then the
LMS shall use the session time as reported by the SCO instead of the session time as
measured by the LMS.

• If there are additional learner sessions within a learner attempt, the cmi.session_time
becomes uninitialized at the beginning of each additional learner session within the
learner attempt.

SCORM 2004 2nd Edition Addendum Version 1.0 3-5
© 2004 Advanced Distributed Learning.

All Rights Reserved.

3.3. Setting the Current Activity to None

This addendum addresses a clarification in the SCORM SN Version 1.3.1 to explicitly
define when an LMS should set the Global State Information (SN Version 1.3.1, Section
4.2.1.6) Current Activity element to None (or undefined).

3.3.1. SCORM Update

The first paragraph of Section 2.3 Starting and Stopping a Sequencing Session will be
updated as follows:

From:

A Sequencing Session is the time from when an attempt on the root activity of an
Activity Tree begins until that attempt ends. The SCORM Sequencing Behaviors only
specify which navigation requests can begin a sequencing session, but they do not specify
when or how those navigation requests are triggered. Generally, the LMS will issue a
Start navigation request in recognition of some system event, e.g., a login, begin course,
etc. It is recommended, if the previous sequencing session ended due to a Suspend All
navigation request, the LMS should issue a Resume All navigation request instead of a
Start.

To:

A Sequencing Session is the time from when an attempt on the root activity of an
Activity Tree begins until that attempt ends; outside of the context of a Sequencing
Session the Current Activity is considered to be undefined. The SCORM Sequencing
Behaviors only specify which navigation requests can begin a Sequencing Session, but
they do not specify when or how those navigation requests are triggered. Generally, the
LMS will issue a Start navigation request in recognition of some system event, e.g., a
login, begin course, etc. It is recommended, if the previous sequencing session ended due
to a Suspend All navigation request, the LMS should issue a Resume All navigation
request instead of a Start.

The first set of steps defined in Section 4.3.1 Sequencing Loop will be updated as
follows:

From:

Begin Sequencing Session

(1) The learner initiates access to the LMS (e.g., accesses the system, logs in, etc.)
and establishes a context within a particular unit of instruction (e.g., selects a
course, a content organization, etc.).

(2) The LMS initiates a sequencing process by issuing a Start, Resume All, or Choice
navigation request.

3-6 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

(3) The Navigation Behavior translates the Start, Resume All, or Choice navigation
request into the appropriate sequencing request and processes it. The sequencing
session “officially” begins when an activity is identified for delivery – one
successful pass through the following Sequencing Loop.

To:

Begin Sequence Session **:
(1) The learner initiates access to the LMS (e.g., accesses the system, logs in, etc.)

and establishes a context within a particular unit of instruction (e.g., selects a
course, a content organization, etc.).

** Prior to the beginning of a sequencing session, the Current Activity shall be considered
to be None (or undefined).

(2) The LMS initiates a sequencing process by issuing a Start, Resume All, or Choice
navigation request.

(3) The Navigation Behavior translates the Start, Resume All, or Choice navigation
request into the appropriate sequencing request and processes it. The sequencing
session “officially” begins when an activity is identified for delivery – one
successful pass through the following Sequencing Loop.

SCORM 2004 2nd Edition Addendum Version 1.0 3-7
© 2004 Advanced Distributed Learning.

All Rights Reserved.

This page intentionally left blank.

3-8 SCORM 2004 2nd Edition Addendum Version 1.0
© 2004 Advanced Distributed Learning.

All Rights Reserved.

Document Revision History

Release Date Description of Change

09/15/2004 Initial Draft. Added the following addenda:

• Addendum 2.1: Handling of Invalid SetValue() Requests
for Data Model Element Collections

• Addendum 2.2: Ambiguous Pseudo-Code in Case #4 of
Choice Sequencing Request Process

• Addendum 2.3: Misevaluation of Traversal Direction
• Addendum 2.4: Measure Rollup Should not be Applied to

Leaf Activities
• Addendum 2.5: Invalid Default Value defined for the

measureSatisfactionIfActive attribute
• Addendum 2.6: Incorrect SPM for the <dataFromLMS>

Element
• Addendum 2.7: Handling of Reserved Delimiters
• Addendum 2.8: Deprecating the adlcp:persistState

Attribute
• Addendum 3.1: Ambiguous information defined in the

language_type Data Type
• Addendum 3.2: Clarification of Learner Session

Initialization Requirements
• Addendum 3.3: Setting the Current Activity to None

SCORM 2004 2nd Edition Addendum Version 1.0 3-9
© 2004 Advanced Distributed Learning.

All Rights Reserved.

	Purpose
	Handling of Invalid SetValue() Requests for Data Model Eleme
	Rationale for Change
	SCORM Update

	Ambiguous Pseudo-Code in Case #4 of Choice Sequencing Reques
	Rationale for Change
	SCORM Update

	Misevaluation of Traversal Direction
	Rationale for Change
	SCORM Update

	Measure Rollup Should not be Applied to Leaf Activities
	Rationale for Change
	SCORM Update

	Invalid Default Value defined for the measureSatisfactionIfA
	Rationale for Change
	SCORM Update

	Incorrect SPM for the <dataFromLMS> Element
	Rationale for Change
	SCORM Update

	Handling of Reserved Delimiters
	Rationale For Change
	SCORM Update

	Deprecating the adlcp:persistState Attribute
	Rationale For Change
	SCORM Update

	Ambiguous information defined in the language_type Data Type
	SCORM Update

	Clarification of Learner Session Initialization Requirements
	SCORM Update

	Setting the Current Activity to None
	SCORM Update

