
 
 

 
 
 

Advanced Distributed Learning Initiative 
 
 
 
 

Sharable Content Object 
Reference Model 

 
 

SCORM 
 
 
 
 
 

Version 1.1 
 
 
 
 

January 16, 2001 
 
 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 
 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 

Advanced Distributed Learning 
Sharable Content Object Reference Model 

Version 1.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Available at 
www.adlnet.org 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For questions and comments visit the ADL Help Desk at 
www.adlnet.org. 

 
 
 
 
 

Sharable Content Object Reference Model (SCORM) Version 1.1 i 

© 2001 Advanced Distributed Learning. 
All rights reserved. 

http://www.adlnet.org/


 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 
 

ii Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 

Editor 
Philip Dodds (ADL) 

 
Key Contributing Editors (ADL) 

Ron Ball 
Dexter Fletcher 
Alan Hoberney 

Paul Jesukiewicz 
Kirk Johnson 
Jeff Krinock 

Schawn Thropp  
 

Partial List of Contributors: 
 

Alliance of Remote Instructional Authoring & Distribution 
Networks for Europe (ARIADNE)  (www.ariadne-eu.org) 

Erik Duval 
Eddy Forte  

Florence Haenny 
Ken Warkentyne 

 
Aviation Industry CBT (Computer-Based Training) Committee (AICC)   (www.aicc.org) 

Jack Hyde 
Bill McDonald 

Anne Montgomery 
 

Institute of Electrical and Electronics Engineers (IEEE) 
Learning Technology Standards Committee (LTSC)  (ltsc.ieee.org) 

Mike Fore  
Wayne Hodgins 

 
IMS Global Learning Consortium, Inc.  (www.imsproject.org) 

Thor Anderson  
Steve Griffin 
Ed Walker 

Tom Wason 
 

(At Large) 
Bob Alcorn 

Lenny Greenberg 
Chris Moffatt 
Boyd Nielsen  
Claude Ostyn 

Chantal Paquin 
Mike Pettit  
Dan Rehak 

Tom Rhodes  
Tyde Richards 

Roger St. Pierre 
Kenny Young 

 
…and many others. 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 iii 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 
 

iv Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 

Table of Contents 
 
 

SECTION  1    THE SHARABLE CONTENT OBJECT REFERENCE MODEL ........ 1-1 
1.1. ABOUT THIS DOCUMENT.............................................................................................................. 1-3 

1.1.1. Description of the SCORM ................................................................................................. 1-3 
1.1.2. Status of This Document ..................................................................................................... 1-4 
1.1.3. Organization of This Document .......................................................................................... 1-4 
1.1.4. The SCORM and Other Standards Activities ...................................................................... 1-5 
1.1.5. Thanks to Key Industry Contributors .................................................................................. 1-7 
1.1.6. Overview of Changes from the SCORM Version 1.0 ......................................................... 1-7 
1.1.7. Ancillary Sample Software.................................................................................................. 1-9 

1.2. THE ADL INITIATIVE ................................................................................................................. 1-11 
1.2.1. About the ADL Initiative................................................................................................... 1-11 
1.2.2. Goal of ADL...................................................................................................................... 1-11 
1.2.3. ADL Vision ....................................................................................................................... 1-12 
1.2.4. The SCORM’s Role in Fulfilling ADL’s Vision............................................................... 1-13 
1.2.5. The Advanced Distributed Learning Co-Laboratory......................................................... 1-13 

1.3. RATIONALE FOR A COMMON REFERENCE MODEL...................................................................... 1-17 
1.3.1. The Need for Competency................................................................................................. 1-17 
1.3.2. The Value of Tailored Instruction ..................................................................................... 1-17 
1.3.3. The Effectiveness of Technology-Based Instruction......................................................... 1-18 
1.3.4. Distance Learning vs. Advanced Distributed Learning..................................................... 1-19 
1.3.5. Promoting the Use of Technology-Based Instruction........................................................ 1-20 
1.3.6. The Need for a Reference Model....................................................................................... 1-20 
1.3.7. Reference Model Criteria .................................................................................................. 1-21 

1.4. REVOLUTIONARY DRIVING FORCES ........................................................................................... 1-23 
1.4.1. Early Stages of Computer-Based Instruction..................................................................... 1-23 
1.4.2. Emergence of Intelligent Tutoring Systems ...................................................................... 1-24 
1.4.3. Evolutionary Split.............................................................................................................. 1-25 
1.4.4. Impact of the Internet and the World Wide Web............................................................... 1-25 
1.4.5. Resulting New Technical Requirements ........................................................................... 1-26 

1.5. INTRODUCTION TO THE SHARABLE CONTENT OBJECT REFERENCE MODEL ............................... 1-27 
1.5.1. High Level Requirements.................................................................................................. 1-27 
1.5.2. Web-Based Design Assumption........................................................................................ 1-27 
1.5.3. Describing “Learning Management Systems”................................................................... 1-28 
1.5.4. Tracking the Learner ......................................................................................................... 1-30 
1.5.5. Toward Adaptive and Intelligent Tutoring ........................................................................ 1-30 
1.5.6. Overview of the SCORM .................................................................................................. 1-30 
1.5.6.1. Overview of the SCORM Content Aggregation Model ................................................ 1-30 
1.5.6.2. Overview of the SCORM Run-Time Environment ....................................................... 1-31 
1.5.7. Future Scope of the SCORM............................................................................................. 1-31 
1.5.7.1. The SCORM Versions 1.x............................................................................................. 1-31 
1.5.7.2. The SCORM Versions 2.x............................................................................................. 1-32 

1.6. CONFORMANCE TESTING ........................................................................................................... 1-33 
SECTION  2    THE SCORM CONTENT AGGREGATION MODEL......................... 2-1 

2.1. THE SCORM CONTENT AGGREGATION MODEL.......................................................................... 2-3 
2.1.1. Content Terminology Inconsistencies ................................................................................. 2-3 
2.1.2. The SCORM Content Aggregation Model Nomenclature................................................... 2-4 
2.1.3. Meta-Data.......................................................................................................................... 2-10 
2.1.4. Content Structure Format .................................................................................................. 2-10 
2.1.5. Content Packaging............................................................................................................. 2-10 

Sharable Content Object Reference Model (SCORM) Version 1.1 v 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

2.2. META-DATA............................................................................................................................... 2-13 
2.2.1. Overview ........................................................................................................................... 2-13 
2.2.2. Definitions of the SCORM Meta-Data Elements............................................................... 2-13 
2.2.2.1. Raw Media Meta-Data................................................................................................... 2-14 
2.2.2.2. Content Meta-Data......................................................................................................... 2-14 
2.2.2.3. Course Meta-Data .......................................................................................................... 2-14 
2.2.3. The SCORM Meta-Data Mapping..................................................................................... 2-15 
2.2.3.1. Element Name and Description ..................................................................................... 2-15 
2.2.3.2. SCORM Raw Media, Content, Course .......................................................................... 2-16 
2.2.4. Stand-Alone XML Meta-Data Documents ........................................................................ 2-40 
2.2.5. XML Examples.................................................................................................................. 2-40 

2.3. CONTENT STRUCTURE FORMAT (CSF) ....................................................................................... 2-41 
2.3.1. Overview ........................................................................................................................... 2-41 
2.3.2. Scope ................................................................................................................................. 2-41 
2.3.3. IMS Content Packaging Impact on CSF............................................................................ 2-42 
2.3.4. Approach ........................................................................................................................... 2-42 
2.3.5. Content Structure Format Information Model ................................................................... 2-42 
2.3.5.1. Element .......................................................................................................................... 2-42 
2.3.5.2. Description..................................................................................................................... 2-43 
2.3.5.3. Value Types ................................................................................................................... 2-43 
2.3.5.4. Content Structure Format Information Model Table ..................................................... 2-44 
2.3.5.5. Curricular Taxonomy..................................................................................................... 2-53 
2.3.5.6. Sequencing Using Prerequisites..................................................................................... 2-54 
2.3.6. Content Structure Format XML Binding ........................................................................... 2-56 
2.3.6.1. Narrative Description of XML Binding......................................................................... 2-56 
2.3.6.1.1. <content> Elements ....................................................................................................... 2-57 
2.3.6.1.2. <globalProperties> Elements ......................................................................................... 2-60 
2.3.6.1.3. <block> Elements .......................................................................................................... 2-63 
2.3.6.1.4. <sco> Elements.............................................................................................................. 2-67 
2.3.6.1.5. <externalMetadata> Elements ....................................................................................... 2-73 
2.3.6.1.6. <identification> Elements.............................................................................................. 2-74 
2.3.6.2. Content Structure Format DTD ..................................................................................... 2-76 
2.3.6.3. XML Examples.............................................................................................................. 2-78 

SECTION  3    THE SCORM RUN-TIME ENVIRONMENT....................................... 3-1 
3.1. RUN-TIME ENVIRONMENT OVERVIEW ......................................................................................... 3-3 
3.2. LAUNCH ....................................................................................................................................... 3-5 
3.3. APPLICATION PROGRAM INTERFACE (API) .................................................................................. 3-7 

3.3.1. API Overview ...................................................................................................................... 3-7 
3.3.2. Description of the SCO to LMS Communication API......................................................... 3-7 
3.3.3. API Error Code Usage ....................................................................................................... 3-12 
3.3.4. API General Rules ............................................................................................................. 3-14 
3.3.5. LMS Responsibility ........................................................................................................... 3-14 
3.3.5.1. API Adapter ................................................................................................................... 3-14 
3.3.6. SCO Responsibility ........................................................................................................... 3-16 
3.3.6.1. Find API ........................................................................................................................ 3-16 

3.4. DATA MODEL............................................................................................................................. 3-19 
3.4.1. Data Model Overview........................................................................................................ 3-19 
3.4.1.1. The SCORM Run-Time Environment Data Model ....................................................... 3-19 
3.4.1.2. The SCORM Run-Time Environment Data Model General Rules................................ 3-20 
3.4.2. Data Model Elements......................................................................................................... 3-20 
3.4.3. Handling Lists.................................................................................................................... 3-20 
3.4.4. The SCORM Run-Time Environment Data Model ........................................................... 3-21 
3.4.5. Data Types and Controlled Vocabulary............................................................................. 3-56 

SECTION  4    SCORM EXAMPLES............................................................................. 4-1 
4.1. SCORM EXAMPLES OVERVIEW................................................................................................... 4-3 

vi Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

4.2. SAMPLE RUN-TIME ENVIRONMENT IMPLEMENTATION VERSION 1.1 ........................................... 4-5 
4.2.1. Sample Run-Time Environment Server Component ........................................................... 4-6 
4.2.2. Sample Run-Time Environment Client Component............................................................ 4-7 
4.2.3. Sample Run-Time Environment Data Model ...................................................................... 4-9 
4.2.4. Sample Run-time Environment Debug Indicator .............................................................. 4-11 
4.2.5. Sample Run-Time Environment Sample Course............................................................... 4-12 
4.2.6. Mapping Sample Run-Time Environment Example Code to the SCORM ....................... 4-13 
4.2.7. APIWrapper.js Example Source Code .............................................................................. 4-14 
4.2.8. Content Structure Format XML Document ....................................................................... 4-16 
4.2.9. Course Meta-Data XML Document .................................................................................. 4-21 
4.2.10. Content Meta-Data XML Document ................................................................................. 4-23 
4.2.11. Raw Media Meta-Data XML Document ........................................................................... 4-24 

APPENDIX  A    ACRONYM LIST.............................................................................. A-1 
APPENDIX  B    REFERENCES................................................................................... B-1 
APPENDIX  C    REVISION HISTORY ....................................................................... C-1 

 
 

Sharable Content Object Reference Model (SCORM) Version 1.1 vii 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 
 

viii Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 

1. SECTION I (Page Number Style) 
SECTION  1    

The Sharable Content Object 
Reference Model 

 
 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 
 

1-2 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

1.1. About This Document 

The Department of Defense (DoD) established the Advanced Distributed Learning 
(ADL) initiative to develop a DoD-wide strategy for using learning and information 
technologies to modernize education and training.  In order to leverage existing practices, 
promote the use of technology-based learning and provide a sound economic basis for 
investment, the ADL initiative has defined high level requirements for learning content 
such as content reusability, accessibility, durability and interoperability. 

This document defines a reference model for sharable learning content objects that meet 
ADL high level requirements. 

1.1.1. Description of the SCORM 

The Sharable Content Object Reference Model (SCORM) defines a Web-based learning 
“Content Aggregation Model” and “Run-time Environment” for learning objects.  At its 
simplest, it is a reference model that references a set of interrelated technical 
specifications and guidelines designed to meet DoD’s high level requirements for Web-
based learning content.  These requirements include, but are not limited to, reusability, 
accessibility, durability and interoperability. 

The work of the ADL initiative to develop the SCORM is also a process to knit together 
disparate groups and interests.  This reference model aims to bridge emerging 
technologies and commercial and public implementations. 

A number of organizations have been working on different but highly related aspects of 
Web-based learning technology.  While these evolving areas have made great strides 
recently, they have not been well “connected” to one another.  Some emerging 
specifications are quite general, anticipating a wide variety of implementations by various 
user communities (e.g., those using the Web, CD-ROM, interactive multimedia 
instruction, or other means to deliver instruction); in others the specifications are rooted 
in earlier computer managed instruction (CMI) practices and require adaptation to Web-
based applications. 

The SCORM applies current technology developments – from groups such as the IMS 
Global Learning Consortium, Inc., the Aviation Industry CBT (Computer-Based 
Training) Committee (AICC) and the Institute of Electrical and Electronic Engineers 
(IEEE) Learning Technology Standards Committee (LTSC) – to a specific content model 
to produce recommendations for consistent implementations by the vendor community. 

As shown in figure 1.1.3a below, all of the specifications and guidelines contained or 
referenced in this document can be viewed as separate “books” gathered together into a 
growing library.  Nearly all of the specifications and guidelines are from other 
organizations.  These technical “books” are presently grouped under two main topics: 
“Content Aggregation Model” and “Run-time Environment.”  The editors anticipate 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-3 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

including additional specifications in the SCORM collection in future releases of the 
document. 

Please note that the scope of the SCORM is not all-inclusive.  There are a host of issues 
that are not addressed by this version of the document.  As such, the authors will expand 
the scope of the reference model over time to reflect experience gained through 
implementation and deployment. 

1.1.2. Status of This Document 

The release of this version of the SCORM marks the end of the initial test and evaluation 
phase which began in January of 2000.  Over the past year, researchers and early adopters 
developed trial implementations based on the SCORM Version 1.0, resulting in a series 
of corrections, improvements and clarifications.  Section 1.1.6 provides an overview of 
changes from the SCORM Version 1.0, with details of the changes provided in Appendix 
C. 

This release of the SCORM is now stable, meaning that enough experimentation and 
testing has taken place to establish confidence that applications based upon the model can 
be implemented and tested for conformance.  However, key aspects of the SCORM are 
likely to evolve and change based on future, industry-wide developments.  This means 
that some aspects of the model may need to be “deprecated” (marked as soon to be 
discontinued) in favor of newer approaches soon to be developed.  Aspects that are likely 
to be deprecated are noted, as appropriate, in this document. 

Deprecated functionality will be replaced with newer, improved functionality, with 
sufficient forewarning to permit clear and manageable migration to subsequent versions. 

1.1.3. Organization of This Document 

As shown in figure 1.1.3a below, the SCORM treats each individually referenced 
specification as a separate “book”.  Future versions of the SCORM will likely add new 
specification “books” to the SCORM collection.  The specifications referenced by the 
SCORM Version 1.1 are contained within Sections 2 and 3.  The following is a 
description of each section of the SCORM Version 1.1: 

• Section 1 (this section) contains an overview of the ADL initiative, the rationale 
for the SCORM and a summary of the technical specifications and guidelines 
contained in the remaining sections. 

• Section 2 (The SCORM Content Aggregation Model) contains guidance for 
identifying and aggregating sharable content objects into structured learning 
content.  This section describes a nomenclature for learning content, describes the 
SCORM Content Structure Format (CSF) (derived from AICC)  and references 
the IMS Learning Resource Meta-data Information Model22, itself based on the 
IEEE Learning Technology Standards Committee (LTSC) Learning Objects 

1-4 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Metadata (LOM) Specification21 that was developed as a result of a joint effort 
between the IMS Global Learning Consortium, Inc.3 and the Alliance of Remote 
Instructional Authoring and Distribution Networks for Europe (ARIADNE)12.  
Together, these “books” form the SCORM Content Aggregation Model.  These 
are shown as Section 2 books in figure 1.1.3a below. 

• Section 3 (The SCORM Run-Time Environment) includes guidance for 
launching, communicating with and tracking content in a Web-based 
environment.  This section is based directly on the Run-time Environment 
functionality defined in AICC’s CMI001 Guidelines for Interoperability4.  ADL 
collaborated with AICC members and participants to develop a common Launch 
and API specification and to adopt the AICC Data Model for Web-based data 
elements. These are shown as Section 3 books in figure 1.1.3a below. 

• Section 4 (SCORM Examples) provides an overview of available example code 
and software tools.  These examples and tools are available online at 
www.adlnet.org. 

SCORM
SECTION 2: 
Content Aggregation Model

2.2 Meta-data Dictionary (from IEEE)

2.3 Content Structure Format (derived from AICC)

(External Ref) Meta-data XML Binding Best Practice (from IMS)

3.2 Launch, 3.3 Communication API (from AICC)

3.4 Data Model (from AICC)

SECTION 3: 
Run-Time Environment

 
Figure 1.1.3a: The SCORM as a collection of specifications. 

1.1.4. The SCORM and Other Standards Activities 

As discussed throughout this document, the SCORM references a collection of 
specifications and guidelines developed in other organizations and adapted to one another 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-5 

© 2001 Advanced Distributed Learning. 
All rights reserved. 

http://www.adlnet.org/


 
 

in an effort to form a more complete, implementable model.  ADL continues to work 
with these other organizations and relies on their processes for specification development 
and industry ratification.  ADL’s role is that of an integrator and tester of specifications, 
bridging the gap between early stage development and industry adoption. 

There are many organizations working on specifications related to e-learning, but three in 
particular are key.  While ADL may not embrace all of the work from these organizations 
(some is out of scope), these organizations play a vital role in the formation of next-
generation learning technologies.  ADL encourages you to become active participants in 
one or more of these organizations for future specification development.  The 
organizations along with their respective contact information are listed in the table below. 

ARIADNE, AICC, IEEE and IMS Contact Information 

Organization Contact Information World Wide Web 
Alliance of Remote 
Instructional Authoring 
& Distribution 
Networks for Europe 
(ARIADNE)12 

Mme M. Rittmeyer or M. E. Forte 
Phone: +41-21 693 6658 / 4755 
Fax: +41-21 693 4770 
ariadne@ariadne-eu.org 

www.ariadne.eu-org 

 

Aviation Industry CBT 
(Computer-Based 
Training) Committee 
(AICC)1 

Dr. Scott Bergstrom, AICC 
Administrator 
Phone: (208) 356-1136 
admin@aicc.org 

www.aicc.org 

IEEE Learning 
Technology Standards 
Committee (LTSC)2 

Robby Robson, Chair, IEEE LTSC
Phone: (541) 754-1215 
rrobson@saba.com 

ltsc.ieee.org 

IMS Global Learning 
Consortium, Inc.3 

For questions regarding 
Developers Network Membership: 

Marcia Rockwood, Director 
Operations 
Phone: (617) 571-7274 
mrockwood@imsproject.org 

For questions regarding 
Contributing Membership: 

Edward Walker, Ph.D., Chief 
Executive Officer 
ewalker@imsproject.org 
Phone: (978) 312-1082 

www.imsproject.org 

1-6 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 

mailto:ariadne@ariadne-eu.org
http://www.ariadne.eu-org/
mailto:admin@aicc.org
http://www.aicc.org/
mailto:rrobson@saba.com
http://ltsc.ieee.org/
mailto:mrockwood@imsproject.org
mailto:ewalker@imsproject.org
http://www.imsproject.org/


 
 

1.1.5. Thanks to Key Industry Contributors 

There are many, many people from industry, working within AICC, IMS, IEEE and 
ADL, who have made important contributions to the evolution of the SCORM.  While the 
editors cannot recognize everyone, certain individuals made pivotal contributions to the 
development process.  ADL wishes to thank the following people whose assistance 
proved critical to the creation of the SCORM: 

Eddy Forte and Eric Duval (ARIADNE): For their continuing contribution of 
Learning Object Metadata (LOM) specifications submitted from ARIADNE to 
IEEE since 1997. 

Wayne Hodgins (Autodesk): For chairing the IEEE LTSC Learning Objects 
Metadata Working Group and bringing the meta-data specification to maturity. 

Jack Hyde (AICC/FlightSafety Boeing Training International): For his efforts to 
evolve the AICC CMI guidelines to meet Web-based requirements and submitting 
the harmonized results to IEEE. 

Claude Ostyn (click2learn.com): For developing a common launch and API 
Adapter proposal that formed the basis of the SCORM/AICC Run-time 
Environment. 

Tyde Richards (IBM Mindspan Solutions): For designing the prototype XML 
Course Structure Format representation that formed the basis of the SCORM CSF, 
and for his work to migrate the AICC CMI guidelines into the Web world. 

Ed Walker (IMS Global Learning Consortium, Inc.): For his work to include 
participation and inclusion of work from other groups and creating a collaborative 
environment within IMS. 

Kenny Young (Microsoft): For working with ADL, AICC and IMS to develop a 
single industry content packaging scheme that harmonizes the requirements for all 
groups. 

Again, these key names represent a fraction of the many contributors to the SCORM.  All 
participants worked hard to create consensus and develop solutions to difficult problems.  
Hours of hard work and meetings continue to produce a substantial and growing body of 
work. 

1.1.6. Overview of Changes from the SCORM Version 1.0 

Since its release in January 2000, the SCORM has been in a test and evaluation phase.  
As expected, participants raised a number of questions and issues as they attempted to 
implement the SCORM Version 1.0.  The SCORM Version 1.1 includes corrections and 
improvements based on lessons learned from these early participants, while avoiding 
changing or expanding its scope from Version 1.0. 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-7 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Most obvious of the many changes made to this document is the change in its title: 
Sharable Courseware Object Reference Model has become Sharable Content Object 
Reference Model.  This change has been made to better reflect the fact that the 
specifications contained in and referenced by the SCORM apply to various levels of 
courseware components (content) as well as entire courses. 

This release of the SCORM also aims to reorganize the document in a more useful 
structure by grouping specifications into functional groups while keeping each 
specification in its own sub-section. 

Other changes to the SCORM result from the collaborative efforts of the many 
organizations contributing to the development of the SCORM.  During the test and 
evaluation phase of the SCORM Version 1.0, representatives of the IEEE Learning 
Technology Standards Committee (LTSC)2 and the AICC1 decided to streamline the 
AICC Computer Managed Instruction (CMI) specifications4 that are being submitted to 
IEEE2.  Streamlining resulted in the removal of a significant number of data elements in 
both the AICC Course Structure Format4 and the AICC CMI Data Model4 (on which the 
SCORM Run-time Environment Data Model is directly based).  These decisions were 
based on a lack of widespread usage and in anticipation of more robust data models under 
development in several standards groups.  In an effort to keep industry practice consistent 
and harmonized, ADL deprecated the elements removed by AICC/IEEE in this version of 
the SCORM.  Work in process within IEEE, AICC and the IMS Global Learning 
Consortium, Inc.3 is expected to eventually replace the functionality removed from this 
version. 

The data elements removed from the Content Structure Format (CSF) and data model 
were all “optional” in the original release; therefore, the editors anticipate minimal 
impact.  Their removal should reduce the amount of work and maintenance for 
implementers, especially Learning Management System (LMS) providers, and may not 
affect current practice significantly since, according to vendor feedback, these elements 
were rarely, if ever, fully implemented. 

Aligning with the change from Sharable Courseware Object Reference Model to 
Sharable Content Object Reference Model, the Course Structure Format described in the 
SCORM Version 1.0 has likewise been changed to Content Structure Format.  This 
change is necessary to reflect the fact that aggregations of learning content smaller than 
an entire course can be represented by the SCORM. 

The SCORM Version 1.1 also contains important improvements and changes made to the 
Application Program Interface (API) in the Run-time Environment that will require code 
changes for both content and LMS implementations. 

Finally, this version greatly expands documentation of the SCORM by including more 
examples, explanations and details.  The editors of the SCORM look forward to feedback 
on this and future versions of the SCORM.  Utilize the on-line virtual community on 
www.adlnet.org to submit your comments and contributions. 

A more detailed listing of the technical changes to the SCORM are summarized in 
Appendix C. 

1-8 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 

http://www.adlnet.org/


 
 

1.1.7. Ancillary Sample Software 

The release of the SCORM Version 1.1 includes examples of code implementing aspects 
of the SCORM.  These basic examples are provided to accelerate more sophisticated 
implementations.  Those who review or use the code examples are encouraged, but not 
required, to provide feedback to the ADL initiative concerning their experiences.  They 
are also encouraged to develop additional or alternative code examples that may be 
shared with others.  In this way the SCORM will become more complete and accurate, 
and test-development software will become more robust. 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-9 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 
 

1-10 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

1.2. The ADL Initiative 

1.2.1. About the ADL Initiative 

In November 1997, the Department of Defense (DoD) and the White House Office of 
Science and Technology Policy (OSTP) launched the Advanced Distributed Learning 
(ADL) initiative.  The purpose of the ADL initiative is to ensure access to high-quality 
education and training materials that can be tailored to individual learner needs and made 
available whenever and wherever they are required. 

This initiative is designed to accelerate large-scale development of dynamic and cost-
effective learning software and to stimulate a vigorous market for these products in order 
to meet the education and training needs of the military and the nation's workforce in the 
21st century.  ADL is developing a common technical framework for computer and Web-
based learning that will foster the creation of reusable learning content as "instructional 
objects." 

The ADL Strategy 

• Pursue emerging network-based technologies 

• Facilitate development of common standards 

• Lower development costs 

• Promote widespread collaboration that satisfies common needs 

• Enhance performance with next-generation learning technologies 

• Work with industry to influence commercial off-the-shelf (COTS) product 
development 

1.2.2. Goal of ADL 

The principle goal of the ADL initiative is to provide high quality instruction anytime, 
anywhere and tailored to each learner’s needs.  Using technology to integrate and deliver 
sharable content may be the best means to reach this goal, but it is a means to an end.  It 
is not the goal itself. 

This document is also a means to an end.  It specifies a technical methodology that will 
help achieve functional capabilities targeted by the ADL goal.  The SCORM is essential 
to the success of ADL, but it is not sufficient. 

The ADL goal will only be satisfied with the provision of high-quality instruction 
available anytime, anywhere.  By high-quality we mean instruction that achieves its 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-11 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

objectives dependably (for all students) and efficiently (with minimal costs and 
maximum effectiveness). 

The ADL initiative assumes that high-quality instruction that is both dependable and 
efficient will adapt itself to the unique needs, abilities, background, interests and 
cognitive style of each learner.  It will tailor the content, pace, detail, difficulty, etc. of its 
presentations as needed by specific individuals at specific times. 

Further, the instruction provided will be accessible anytime, anywhere.  One way to 
achieve this accessibility is to provide access to the Internet and World Wide Web.  An 
assumption underlying the approach taken by the ADL initiative is that any instructional 
material made available for Web delivery can readily be delivered using other 
instructional technology. 

1.2.3. ADL Vision 

In the future, ADL sees communications networks and personal delivery devices 
becoming pervasive and low cost.  The time will come when such devices and services 
are transparent to the user in terms of ease of use, bandwidth and portability.  The 
challenges in meeting ADL’s overall goals are not then based on technology 
infrastructure per se.  Instead, the task is to understand how to fully utilize the next 
generation technology infrastructure for learning anytime, anywhere. 

ADL development envisions the creation of learning “knowledge” libraries, or 
repositories, where learning objects may be accumulated and cataloged for broad 
distribution and use.  These objects must be readily accessible across the World Wide 
Web, or whatever form our global information network takes in the future. 

It is expected that the development of such repositories will provide the basis for a new 
instructional object economy that rewards content creators for developing high quality 
learning objects and encourages the development of whole new classes of products and 
services that provide accessible, sharable and adaptive learning experiences to learners. 

The development of reusable, sharable learning objects is key to ADL’s long term vision.  
As shown in figure 1.2.3a, once sharable learning objects exist and are commonly 
available, they can be assembled in real-time, on demand and then delivered to learners 
as needed.  Thus the ADL initiative is focused on the design of sharable learning content 
objects and the development of an instructional object economy. 

 

1-12 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

•

Sharable Content 
Objects from across the 

World Wide Web

Assembled in 
real-time, on-

demand

To provide learning 
and assistance 

anytime, anywhere

Server

The “A” in
ADL

Figure 1.2.3a: Long term vision of the Advanced Distributed Learning initiative 

1.2.4. The SCORM’s Role in Fulfilling ADL’s Vision 

The Sharable Content Object Reference Model constitutes an important first step toward 
liberating learning content objects from local implementations.  It is intended to provide 
the technical means for content objects to be easily shared across multiple learning 
delivery environments. 

The SCORM, however, does not solve all of the technical challenges that must be 
overcome to create a robust instructional object economy.  Other efforts, built on the 
SCORM foundation but more directly concerned with instruction, will be required.  The 
SCORM itself will continue to evolve and overcome technical issues and restrictions that 
impede achieving ADL’s long term vision. 

1.2.5. The Advanced Distributed Learning Co-Laboratory 

In 1999, the Department of Defense (DoD) established the Advanced Distributed 
Learning (ADL) Co-Laboratory5 (Co-Lab) initially at the Institute for Defense Analyses 
(IDA)6 and it remains located in Alexandria, Virginia, to foster the collaborative research, 
development and assessment of the common tools, standards, content and guidelines for 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-13 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

the ADL initiative.  Executive Order 131117 tasked the DoD to take the lead in working 
with other federal agencies and the private sector to develop common specifications and 
standards for technology-based learning that could be used to support federal and national 
education and training needs.  The DoD was also tasked to provide guidance to other 
federal agencies on the best use of these specifications and standards.  As the focal point 
for the SCORM, the ADL Co-Lab will provide a forum for collaborative exchange and 
technical support for developing and assessing prototype tools and learning content that 
observe the new and evolving specifications referenced by the SCORM. 

The ADL Co-Lab concept is based on joint service and interagency collaboration and 
demonstration.  The ADL Co-Lab houses a number of DoD service activities and 
operates as the organizational host for agency sponsors and project managers.  This 
activity stimulates progress being made in knowledge management systems and 
technologies that enhance learning and performance across services and agencies through 
the coordination of efforts.  Figure 1.2.5a below portrays the high-level ADL Co-
Laboratory concept of operations. 

Since the establishment of the ADL Co-Lab, the Department of Labor (DoL) and the 
National Guard Bureau (NGB) have joined the Co-Lab as “contributing sponsors”.  
These organizations are leveraging resources and projects with the Co-Lab and are in the 
process of moving their content into SCORM conformance. 

To support specific ADL communities, two ADL Co-Lab nodes have been established in 
Orlando, Florida and Madison, Wisconsin.  The Joint ADL Co-Laboratory5 node in 
Orlando was established in October 1999 to promote collaborative development of ADL 
prototypes and ADL systems acquisitions, principally among DoD components and the 
military services.  In January 2000, an independent Academic ADL Co-Laboratory5 was 
established in partnership with the University of Wisconsin and the Wisconsin Technical 
College System to promote collaborative development, demonstration and evaluation of 
next-generation learning technologies that enable distributed learning, principally among 
academic institutions.  All three Co-Laboratories work together to share research, 
subject-matter expertise, common tools and course content through the virtual ADL Co-
Lab Network. 

 

1-14 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Figure 1.2.5a: ADL Co-Lab Concept of Operations 

ADL Co-Laboratory Concept of Operations

Agency Sponsors

Organizational Host
Core Management Team

Core Technical Team

Visiting 
Project
Managers

Academic 
Co-Lab Node

Joint
Co-Lab Node

DoD Components
Federal Agencies
Industry
International

Co-Lab

NGB

DoD DoL

 

The ADL Co-Lab will help determine how learning technologies can be designed to 
bring about specific, targeted instructional outcomes reliably within as wide a range of 
instructional settings as possible.  Other research areas include determining the most 
effective methods to: 

• Tailor pace, content, sequence and style of instruction to the needs of individual 
learners – taking advantage of their strengths and concentrating on areas where 
they need help; 

• Integrate technology within our existing instructional institutions and determine 
what changes are needed for these institutions to maximize return on investments 
in technology; 

• Develop new instructional techniques, such as intelligent tutoring, tutorial 
simulations and networked simulation, that take full advantage of the capabilities 
technology brings to instruction; 

• Assess the costs and effectiveness of instructional programs; and 

• Measure and verify the capabilities and performance of learners. 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-15 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

The Co-Lab also will provide an open environment for testing and evaluating learning 
technologies and content associated with distributed learning.  It will foster the 
development, dissemination and maintenance of guidelines to support DoD and other 
federal agencies.  These guidelines will include use of instructional development tools, 
design and development strategies and evaluation techniques.  As such, the ADL Co-Lab 
will facilitate resource sharing across the federal agencies and the private sectors. 

The ADL Co-Lab will test and evaluate projects in order to determine whether they meet 
user requirements for reusability, accessibility, durability, interoperability and cost-
effectiveness.  Candidate projects for the ADL Co-Lab are those that: 

• Demonstrate the ability to move Web-based courses from one learning 
environment (learning management system) to another; 

• Demonstrate the reuse of learning content "objects" across different platforms and 
learning environments; 

• Provide searchable learning content across different learning environments or 
media repositories; 

• Provide adaptable learning tools and content that can be tailored to the needs of 
the individual learner on the fly; and 

• Support intelligent systems, intelligent tutoring and performance support 
capabilities. 

The ADL Co-Lab is inviting federal, academic and private-sector participation in a series 
of events that afford vendors and developers the opportunity to demonstrate the 
interoperability and reuse capability of ADL prototypes and to refine and update the 
SCORM.  These events are referred to as Plugfests.  The Co-Lab serves as a hands-on 
showcase for ADL demonstrations and products that meet the SCORM criteria.  It also 
functions as a clearinghouse for distributed learning technologies, prototypes and 
projects.  For more information, please visit: www.adlnet.org. 

 

1-16 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

1.3. Rationale for a Common Reference Model 

A key ADL requirement for learning content is the ability to reuse instructional 
components in multiple applications and environments regardless of the tools used to 
create them.  This requires, among other things, that content be separated from context-
specific run-time constraints so that it can be incorporated into other applications.  Also, 
for reuse to be possible, content must have common interfaces and data.  This document 
specifies a reference model that abstracts run-time constraints and defines a common 
interface and data scheme for reusable content. 

1.3.1. The Need for Competency 

Government, industry and academia are experiencing a revolution in science and 
technology of unprecedented proportions.  This revolution and the advances it presents 
pose both significant challenges and opportunities.  Organizations must adopt these 
advances and leverage them if they are to compete successfully in the 21st Century.  
However, infusing technology in routine operations increases the demand for people who 
can deploy, operate and maintain it competently.  Despite the increasing presence of 
technology, competent human performance remains as essential as ever, and its ready 
availability is a matter of the first importance in all sectors of the economy. 

Fortunately, technology also provides the means to meet the challenges it presents.  As 
new instructional technologies emerge, they provide opportunities for universally 
accessible and effective life-long learning.  These technologies extend learning beyond 
the confines of traditional classrooms to encompass homes, community resources such as 
museums and libraries and workplaces.  They extend beyond the traditional school-age 
population to support a nation of life-long learners. 

These considerations have led to the vision that guides the work of the ADL initiative. 

1.3.2. The Value of Tailored Instruction 

Empirical studies have raised national interest in employing education and training 
technologies that are based on the increasing power, accessibility and affordability of 
computer and networking technologies.  These studies suggest that realizing the promise 
of improved learning efficiency through the use of instructional technologies—such as 
computer-based instruction, interactive multimedia instruction and intelligent tutoring 
systems—depends on the ability of those technologies to tailor instruction to the needs of 
individuals.  In contrast to classroom learning, these approaches enable the pace, 
sequence, content and method of instruction to better fit each student’s learning style, 
objectives and goals. 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-17 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Research supports the intuitive appeal of technology-based instruction.  The speed with 
which individuals can progress through instruction varies by factors of three to seven – 
even in classes of carefully selected students.8  On average, a student in classroom 
instruction asks about 0.1 questions an hour.9  In individual tutoring, students may ask or 
be required to answer as many as 120 questions an hour.  The achievement of 
individually tutored students may exceed that of classroom students by as much as two 
standard deviations – an improvement that is roughly equivalent to raising the 
performance of 50th percentile students to that of 98th percentile students.10 

The dilemma presented by individually tailored instruction is that it combines an 
instructional imperative with an economic impossibility.  With few exceptions, one 
instructor for every student, despite its advantages, is not affordable.  Instructional 
technology promises to provide most of the advantages of individualized instruction at 
affordable cost while maintaining consistent, measurable, high-quality content. 

1.3.3. The Effectiveness of Technology-Based Instruction 

Studies have shown that technology-based instruction may significantly reduce the costs 
of achieving a wide range of instructional objectives by 30-60 percent.  These studies 
also reveal reduced time to achieve given instructional objectives (30 percent) or 
increased student skills and knowledge (30 percent) – depending on whether achievement 
or time is held constant.11 

The value of these capabilities in reducing direct training costs is obvious.  The savings 
accrued through better management of indirect costs such as productivity and time away 
from a job site are more difficult to quantify and capture, but are equally significant when 
determining the full return on investments in instructional technologies. 

For instance, reducing by 30 percent the time to train just 40 percent of all DoD students 
in specialized skill training – which excludes other categories such as recruit training, 
pilot training, unit training and field exercises – could potentially save the DoD over 
$500 million annually.11 

1-18 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

0.39

0.84
1.05

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Computer B
ased

Instruction (233 Studies)

Interactive Multim
edia

Instruction (47 Studies)

"In
tellig

ent" T
utoring

Systems  (1
1 Studies)

Recent In
tellig

ent

Tutors (5 Studies)

Ef
fe

ct
 

0.50

Figure 1.3.3a: Some Effect Sizes for Technology-Based Instruction 
 

Given these potential cost savings, it is reasonable to ask if training effectiveness must be 
lost to achieve them.  Figure 1.3.3a shows results aggregated from empirical comparisons 
of technology-based training with conventional classroom instruction.  As the figure 
shows, 233 such studies of conventional computer-based instruction averaged an 
improvement in learning of about 0.39 standard deviations.  Adding multimedia 
capabilities also adds effectiveness, raising the improvement to 0.50 standard deviations.  
Intelligent tutoring systems intended to more directly emulate one teacher interacting 
with one student and allowing either the student or the computer to ask questions, 
increases the improvement to 0.84 standard deviations.  Some recent assessments of 
intelligent tutoring systems yielded improvements averaging about 1.05 standard 
deviations.  We have not yet met the 2.00 standard deviation challenge, but the trends are 
promising. 

1.3.4. Distance Learning vs. Advanced Distributed Learning 

The ADL initiative is based on various learning technologies.  Examples of these 
technologies fall into two categories: synchronous and asynchronous. 

Synchronous learning technologies are valuable in providing distance education and 
training in which students are physically separated from instructors.  Synchronous 
technologies can be seen in virtual classroom initiatives, most of which are based on 
video teletraining and video teleconferencing.  These technologies generally require 
students to gather together at one time in specific places, even though they are physically 
distant from the instructor.  Many people refer to this type of synchronous technology as 
“Distance Learning”. 

ADL emphasizes asynchronous technologies that can deliver instruction and mentoring 
without requiring students to gather in specific places at specific times – it concerns 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-19 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

instruction and decision aiding, or ‘mentoring’, available anytime, anywhere.  These 
technologies depend on computer technology for delivery and presentation.  Examples 
include: 

• Computer-Based Instruction 

• Interactive Multimedia Instruction 

• Intelligent Tutoring Systems 

• Network Tutorial Simulation 

• Web-Based Training 

ADL generally refers to these as “Distributed Learning” technologies.  Combining 
traditional computer-based instruction and interactive multimedia technologies with new 
Web-enabled intelligent tutoring and simulation capabilities are referred to as “Advanced 
Distributed Learning” technologies. 

1.3.5. Promoting the Use of Technology-Based Instruction 

There is, then, evidence that technology-based instruction can both lower training costs 
and at the same time increase instructional effectiveness for a variety of training 
objectives and programs.  Yet its use is only beginning.  For instance, data collected  
suggest that less than five percent of DoD training programs routinely use interactive 
training technologies11.  Technology insertion, as is often the case with new applications, 
may depend on issues that are more structural and organizational than technological.  
Accounting categories, local incentives, personnel policies and training procedures must 
be changed to make best use of these new training capabilities. 

Despite these difficulties, the benefits of technology-based instruction are increasingly 
recognized, and initiatives are being undertaken to increase its use.  Primary among these 
is the ADL initiative. 

1.3.6. The Need for a Reference Model 

Successful implementation of ADL requires issuance of guidelines that are shared and 
observed by organizations with a stake in the development and use of instructional 
technology materials.  The ultimate form and status of these guidelines remain to be 
determined.  They may be international or national standards, agreed upon practices, 
recommendations, or de facto practices. 

If these guidelines are to be successfully articulated and implemented, they must be based 
on a common “reference model”.  This model will not replace the detailed models of 
instructional system design or practice that have been devised and adopted by specific 
organizations such as those of instructional developers, instructional tool developers, or 
customers associated with particular industries or the Armed Forces.  Instead, the purpose 

1-20 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

of the reference model is to describe an approach to developing instructional material in 
sufficient detail to permit guidelines for the production of sharable content objects. 

1.3.7. Reference Model Criteria 

There are three primary criteria for such a sharable content objects reference model.  
First, as stated above, it must fully support articulation of guidelines that can be 
understood and implemented for the production of sharable content objects.  Second, it 
must be adopted, understood and used by as wide a variety of stakeholders as possible, 
especially courseware and courseware tool developers and their customers.  Third, it must 
permit mapping of any stakeholder’s specific model for instructional systems design and 
development into itself.  Stakeholders must be able to see how their own model of 
instructional system design is reflected by the reference model they hold in common. 

Up-front investment is required to develop and convert training materials for technology-
based presentation.  These investment costs may be reduced by an estimated 50-80 
percent through the use of sharable content objects that are: 

• Durable – do not require modification as versions of system software change; 

• Interoperable – operate across a wide variety of hardware, operating systems and 
Web browsers; 

• Accessible – can be indexed and found as needed; and 

• Reusable – can be modified and used by many different development tools. 

Procedures for developing such content objects are within the state-of-the-art, but they 
must be articulated, accepted and widely used as guidelines by developers and their 
customers.  These goals can only be achieved through collaborative development.  
Collaboration will also increase the number, quality and per unit value of content objects 
made available.  Such collaboration requires agreement upon a common reference model.  
The Sharable Content Object Reference Model (SCORM) is intended to be such a model. 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-21 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 

1-22 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

1.4. Revolutionary Driving Forces 

The ADL vision of a distributed and highly adaptive learning infrastructure is more than 
an idealistic goal.  Major changes in computing and communications infrastructures are 
converging to produce revolutionary changes in learning systems technology.  As shown 
in figure 1.4a below, this convergence is built upon nearly 50 years of experimentation 
and research along multiple evolutionary paths13.  The historical factors shaping a 
potential convergence of multiple learning methodologies and technological capabilities 
help define near-term requirements for ADL and the SCORM. 

 
Figure 1.4a: Evolution of Computer-based Instruction and Intelligent Tutoring Systems technologies 

1.4.1. Early Stages of Computer-Based Instruction 

Psychologists and educators noted the instructional potential of computers soon after they 
were invented.  Software programs codify process and procedures in an orderly and 
repeatable way.  They can be used to assess the adequacy of learning and instructional 
theories (or just ‘approaches’) in two ways.  First, if a learning or instructional theory can 
be represented in an algorithm, it is at least adequate and testable as a theory.  Second, 
once such a theory is represented in software, the micro-second to micro-second data 
recording features of computers can be used to determine if the theory ‘works’ – if it 
represents learning or instructional reality.  Early computer-based instruction (CBI) 
development focused on automating relatively simple notions of learning and instruction 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-23 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

and then developing methods that proved to be effective.14  This began a long chain of 
derivative work that influenced CBI content design methodology. 

Following in the footsteps of computer science, the fledgling CBI community developed 
shorthand methods for coding successful “subroutine” programs.  These evolved into 
instructional languages that imprinted upon computer science an instructional vocabulary 
understandable to training content developers.  However, these languages were still very 
closely tied to the highly procedural nature and structure of early computing. 

Costs were a major obstacle to widespread use of CBI.  Much depended on the evolution 
of the underlying technology.  Initially based on mainframe computers programmed in 
assembler language or primitive higher-order languages such as Coursewriter and early 
versions of Tutor, the migration and adaptation of CBI to minicomputers, workstations 
and later to personal computers, absorbed much of the energy of researchers and 
developers.  With each succeeding generation of computing capabilities, new capabilities 
and features became available that could further automate instructional design and hide 
the complexities of programming. 

1.4.2. Emergence of Intelligent Tutoring Systems 

As shown in figure 1.4a above, beginning in the late 1960’s, and in parallel with CBI 
“engineers,” groups of researchers began to explore the greater potential of “information 
structure-oriented” approaches to represent human cognition and learning.15  Rooted in 
early artificial intelligence studies, the study of how we learn, master skills and define 
subject domains eventually led to the development of a new approach we now call 
Intelligent Tutoring Systems (ITS). 

Intelligent tutoring researchers took the view that computers could be made to 
“understand” complex learner and knowledge domains and infer from learner interactions 
the most appropriate strategy for instruction.  Several factors have, in the past, hindered 
the development of ITS technologies.16  First, the science of  human cognition was 
relatively immature in the early days of computing – especially in terms of computer 
modeling.  Second, complex modeling and rules-based systems require (then and now) 
considerable computing power.  These factors also negatively affected the advancement 
of artificial intelligence applications and expert systems development (from which ITS is 
largely derived). 

Support for intelligent tutoring systems progressed in step with advancements in 
computer technology and cognitive science.  A considerable body of research was 
eventually compiled confirming the value and effectiveness of intelligent, adaptive 
learning systems based on complex learner and knowledge domain models that could 
approximate, if not emulate, human tutoring techniques.17  However, the transition from 
laboratory experiments into commercial implementations has proved elusive for most ITS 
developers. 

1-24 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

1.4.3. Evolutionary Split 

Early on, computer-based instruction technologists split into two “natural” groups.  The 
first can be described as applied scientists (engineers), and the second as advanced 
researchers.  The engineers followed the evolutionary chain of computer development 
and exploited its advancements.  This concept is shown in figure 1.4a above.  The 
relatively crude early-stage instructional languages evolved into more complex 
development tools that abstracted the underlying implementations into more 
understandable learning constructs.  Development costs were reduced, improved 
effectiveness was demonstrated and a sustainable industry of products and services was 
established.18 

Computer-based instruction technologists on the engineering side continued to refine 
tools to include complex instructional constructs in the form of instructional templates or 
frames.  These templates descend directly from simpler programming techniques, but 
shield designers from the complexities of computer coding.  They are, nonetheless, 
procedural in structure and nature. 

As CBI tools matured, and personal computers proliferated, costs were dramatically 
reduced.  Instructional content incorporated rich multimedia capabilities and authoring 
systems provided sophisticated feature sets.  But these systems, which were 
predominantly client-based, produced monolithic and fairly rigid instructional content 
that was captive to the authoring tool environment.  Instructional content and logic were 
tightly bound together. 

Meanwhile, advanced researchers continued developing prototype Intelligent Tutoring 
Systems.  Their concept of instructional content and design was fundamentally different 
from CBI tool designers.  They sought to generate instructional experiences and 
presentations closely tailored to the needs of individual learners using sophisticated 
models of the learner, the subject matter and tutorial techniques.  Such approaches tended 
to separate control logic from instructional content.  The concept of dynamically 
assembling learning objects to meet specific learning objectives took root. 

1.4.4. Impact of the Internet and the World Wide Web 

The growth of the Internet and the World Wide Web interrupted the developmental 
progression of both CBI and ITS in unanticipated and unexpected ways.  As it developed, 
the Internet provided a widely accessible communications structure built on common 
standards that provided easy access to information and knowledge. 

Architecturally, the Web was antithetical to most CBI authoring system designs.  Web 
content was platform neutral and stored and managed by a remote server, whereas most 
CBI content was stored and executed locally using private script languages processed by 
proprietary run-time software engines.  Nonetheless, the CBI community was quick to 
see the long term benefits of a distributed environment. 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-25 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

The first stages of conversion from stand-alone CBI to Web-based learning content were 
direct adaptations of existing products from CD-ROM to Internet delivery.  The Internet 
was used initially as a replacement distribution medium.  Content was still monolithic 
and held captive by the development environment.  To render content, users were 
required to download proprietary browser plug-ins to process private formats.  The 
brittleness of stand-alone CBI content persisted.19 

Second generation Web-based authoring systems began to more fully embrace the 
separation of content and control as the potential for robust server-based learning 
management systems became better understood.  For the first time, mainstream CBI 
authoring tool developers began to embrace concepts similar to those in the ITS 
community.  Reusable, sharable learning objects and adaptive learning strategies became 
common ground between the CBI and ITS communities. 

1.4.5. Resulting New Technical Requirements 

The World Wide Web has essentially reset the development agenda for both CBI and ITS 
development.  There now exists an ever improving communications and delivery 
platform for accessing knowledge.  The technical standards that underlie the Internet turn 
out to work equally well locally, regionally and globally.  Much of the development work 
once needed to adapt to the latest technology platform has been eliminated.  The Web has 
become the universal delivery platform.  Building upon existing Internet and Web 
standards and infrastructures has freed system developers to finally focus on next 
generation learning architectures. 

Researchers from both the CBI and ITS communities are focusing their attention on 
similar issues: 

• Defining reusable learning objects 

• Developing new content models 

• Developing learner assessment models 

• Creating new models for sequencing content 

• Creating learning “knowledge” repositories. 

Each of these topics drives the requirements for new standards work that will build upon 
and expand existing work such as the SCORM. 

 

1-26 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

1.5. Introduction to the Sharable Content Object 
Reference Model 

This section provides a high level overview of the scope and purpose of the Sharable 
Content Object Reference Model (SCORM).  Subsequently, sections two and three define 
additional technical details of the model. 

1.5.1. High Level Requirements 

The SCORM document frequently references high level ADL requirements.  The 
definitions below describe the high level requirements the SCORM expects to eventually 
enable: 

Accessibility: the ability to access instructional components from one remote location 
and deliver them to many other locations. 

Interoperability: the ability to use instructional components developed in one location 
with one set of tools or platform in another location with a different set of tools or 
platform.  Note: there are multiple levels of interoperability. 

Durability: the ability to withstand technology changes without requiring redesign or 
recoding. 

Reusability: the flexibility to incorporate instructional components in multiple 
applications. 

These can be restated as: 

• The ability of a Web-based Learning Management System (LMS) to launch 
content that is authored by using tools from different vendors and to exchange 
data with that content; 

• The ability of Web-based LMS products from different vendors to launch the 
same content and exchange data with that content during execution; and 

• The ability of multiple Web-based LMS products/environments to access a 
common repository of executable content and to launch such content. 

1.5.2. Web-Based Design Assumption 

The SCORM assumes a Web-based infrastructure as a basis for its technical 
implementation.  ADL made this assumption for several reasons: 

• Web-based technologies and infrastructure are rapidly expanding and provide a 
mainstream basis for learning technologies. 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-27 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

• Web-based learning technology standards do not yet exist in widespread form. 

• Web-based content can be delivered using nearly any medium (e.g., CD-ROM, 
stand-alone systems and/or as networked environments). 

This approach embraces industry’s transition to common content and delivery formats.  
Computer operating system environments now natively support Web content formats.  
The trend is toward the use of common formats that can be used locally, on local 
intranets or over the Internet.  The SCORM extends this trend to learning technologies. 

1.5.3. Describing “Learning Management Systems” 

Learning Management System (LMS) is a catch-all term used throughout this document.  
It refers to a suite of functionalities designed to deliver, track, report on and administer 
learning content, student progress and student interactions.  The term LMS can apply to 
very simple course management systems, or highly complex enterprise-wide distributed 
environments.  A highly generalized model showing potential components or services of 
an LMS is shown in figure 1.5.3a below. 

Many participants in the development of learning technology standards now use the term 
LMS instead of “computer managed instruction” (CMI) so as to include new 
functionalities and capabilities not historically associated with CMI systems.  These 
include, among other services, back-end connections to other information systems, 
complex tracking and reporting, centralized registration, on-line collaboration and 
adaptive content delivery. 

 

1-28 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

• Content Format
• Protocols & Data Interchange

SCO

Block
Block

Profiles/
Registration

(Roster
Operations)

Content 
Repository 
& Structure

Aggregation Root

Server/
Display 
Engine

HTML/Java/Streaming Media
Browser

Internet

Testing/
Assessment

Tracking
(Data

Management)

Content/Course
Administration

Learning Management System Model

Reporting 
(Data 

Management)

API Adapter

 
Figure 1.5.3a: Highly generalized model of a “Learning Management System” (LMS) 

as a suite of services that manage the delivery and tracking of learning content to a 
learner.  The SCORM does not specify functionality within the LMS. 

 

The term LMS is now being used as a superset description of many possible capabilities.  
Within the SCORM context, implementations are expected to vary widely.  The SCORM 
focuses on key interface points between content and LMS environments and is silent 
about the specific features and capabilities provided within a particular LMS. 

Within the SCORM, the term LMS implies a server-based environment in which the 
intelligence resides for controlling the delivery of learning content to students.  In other 
words, in the SCORM, the LMS has the smarts about what to deliver and when, and 
tracks student progress through the learning content. 

Learning content, therefore, has no management role in the SCORM since that function is 
entirely within the LMS.  This means that the SCORM content does not determine (on its 
own on the client-side) how to navigate through a course, or when a student has 
completed a section of the course; such navigation functionality belongs to the LMS.  
This approach frees content from course-specific constraints and permits content to be 
developed that is reusable, sharable and as context independent as possible. 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-29 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

1.5.4. Tracking the Learner 

Web-based learning systems differ from most Web site architectures in one important 
aspect.  Most Web sites deliver content essentially one way: from the server to the user.  
Occasionally information is entered by the user, for example when ordering something 
on-line, which is then posted back to the server.  But for the most part, Web servers don’t 
keep track of what the user is doing within the content until a specific request is made. 

A learning management system, on the other hand, must track learner progress and assess 
mastery.  This involves, among other things, gathering student profile information, 
delivering content to the learner, monitoring key interactions and performance within the 
content and then determining what the student should next experience. 

Simple Web sites lack the means to track student progress in a consistent way.  Creating 
Sharable Content Objects that are trackable requires a standard model of the information 
being tracked.  The Run-time Environment in Section 3 provides the mechanisms for 
communicating this kind of learning tracking in a standardized way. 

1.5.5. Toward Adaptive and Intelligent Tutoring 

The development of small, reusable and interoperable pieces of learning content, and the 
shift of control flow from embedded within content to an external representation which 
can be processed by the LMS establishes the basis for entirely new learning technologies. 

The most obvious benefits of sharability and reuse are the possibility of large content 
repositories and the development of a new “content economy” where Sharable Content 
Objects are traded widely. 

An even more interesting prospect is the development of complex learning management 
systems that can assemble, reorder and redefine learning content to fit the real-time needs 
of the learner.  Unfortunately, the lack of reusable and re-sequenceable content has 
delayed this vision from becoming reality.  The SCORM’s specific purpose is to provide 
a starting point for the next generation of advanced learning technologies that can be 
highly adaptive to the learner’s individual needs. 

1.5.6. Overview of the SCORM 

The following describes a brief high level summary of the SCORM.  This section also 
presents an overview of the SCORM Run-time Environment. 

1.5.6.1. Overview of the SCORM Content Aggregation Model 
The purpose of the SCORM Content Aggregation Model is to provide a common means 
for composing learning content from discoverable, reusable, sharable and interoperable 
sources.  The SCORM Content Aggregation Model further defines how learning content 
can be identified and described, aggregated into a course or portion of a course and 

1-30 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

moved from one Learning Management System (LMS) to another or between 
repositories.  The SCORM Content Aggregation Model defines the technical methods for 
accomplishing the first two processes, and anticipates the mechanism that will soon be 
available for the last.  The model includes specifications for a Content Structure Format 
and Meta-data.  Section 2 provides a description of the SCORM Content Aggregation 
Model. 

1.5.6.2. Overview of the SCORM Run-Time Environment 
The purpose of the SCORM Run-time Environment is to provide a means for 
interoperability between Sharable Content Object-based learning content and Learning 
Management Systems.  A requirement of the SCORM is that learning content be 
interoperable across multiple LMSs regardless of the tools used to create the content.  For 
this to be possible, there must be a common way to start content, a common way for 
content to communicate with an LMS and predefined data elements that are exchanged 
between an LMS and content during its execution.  The three components of the SCORM 
Run-time Environment are defined in this document as Launch, Application Program 
Interface (API) and Data Model.  The details of these elements of the SCORM Run-time 
Environment are described in Section 3. 

1.5.7. Future Scope of the SCORM 

1.5.7.1. The SCORM Versions 1.x 
The SCORM Version 1.1 is deemed a stable starting point for future work.  The editors 
anticipate that new sections of the SCORM – added to increase the SCORM’s scope – 
will augment existing sections rather than replace or modify them.  Because the SCORM 
builds upon and incorporates existing industry standards, specifications and guidelines 
even in cases in which new additions to the SCORM overlap existing SCORM 
functionality, ADL anticipates a graceful migration to new practices as they are 
successfully tested and validated. 

Releases beyond Version 1.1 are expected to add new functionality after appropriate 
implementation trials.  The IMS Content Packaging Specification20, now in final 
development, will likely become the next addition to the SCORM.  The editors anticipate 
incorporating content packaging in the SCORM Version 1.2. 

Other specifications are in development that address issues such as: 

• Interoperability of assessment items and exchange of assessment results 

• Consistent content sequencing and navigation models 

• Learner profile interoperability. 

The SCORM may incorporate these specifications upon completion of appropriate review 
and evaluation. 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-31 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

1.5.7.2. The SCORM Versions 2.x 

Discussions are underway within many standards organizations regarding “next 
generation” Web-based learning architectures.  These discussions are expected to result 
in implementable specifications. 

Listed below are examples of new capabilities that are candidates for the SCORM 
Version 2.0 and beyond: 

• Designing new run-time and course data model architectures 

• Incorporating active server models for content 

• Incorporating simulation objects 

• Incorporating electronic performance support objects 

• Implementing SCORM-based intelligent tutoring capabilities 

• Designing a new content model 

• Incorporating gaming technologies. 

The exact scope and timetable for the SCORM Versions 2.x is not yet defined.  These 
examples are candidates that will be discussed and debated over the next year or more.  
Monitor the ADL Web site (www.adlnet.org) for information about ongoing 
developments. 

 

1-32 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 

http://www.adlnet.org/


 
 

1.6. Conformance Testing 

The ADL Co-Laboratory5 developed the SCORM conformance test software, procedures 
and supporting documents.  The test software may be downloaded from www.adlnet.org. 

In addition, ADL is developing a testing certification process for organizations who wish 
to provide a testing service for their community of interest.  Monitor the ADL Web site 
for developments concerning the certification process. 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 1-33 

© 2001 Advanced Distributed Learning. 
All rights reserved. 

http://www.adlnet.org/


 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 
 
 

1-34 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 

2. SECTION II (Page Number Style) 
SECTION  2    

The SCORM Content Aggregation 
Model 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 
 

2-2 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

2.1. The SCORM Content Aggregation Model 

The SCORM Content Aggregation Model defines how learning content can be identified 
and described, aggregated into a course or portion of a course, and moved from one 
Learning Management System (LMS) to another or between repositories.  This section 
defines the technical methods for accomplishing the first two processes and anticipates 
the mechanism that will soon be available for the last. 

2.1.1. Content Terminology Inconsistencies 

References in this document to “content” can be confusing at first.  This confusion is 
compounded by the use of “Assignable Unit”, and “lesson” within the AICC CMI Data 
Model4, and Sharable Content Object within the SCORM.  All of these terms have roots 
in historical practices of different groups and organizations.  Each group has a slightly 
different meaning for these and other terms.  This section attempts to clarify the SCORM 
concepts associated with learning content. 

In an important sense, the terms “lesson” and “Assignable Unit” both refer to client-side 
content. 

“Lesson” has multiple definitions in the AICC CMI guidelines4, including: 

• A meaningful division of learning that is accomplished by a student in a 
continuous effort, that is, at one sitting.  That part of the learning that is between 
designated breaks.  Frequently requires approximately 20 minutes to an hour; 

• A grouping of instruction that is controlled by a single executable computer 
program; and 

• A unit of training that is a logical division of a subchapter, chapter, or course. 

In a Web-based environment, a “unit of training” is likely to be made of many content 
pieces and is less likely to be contained within a single executable computer program. 
Thus lesson is a somewhat imprecise term that is subject to broad interpretation.  The 
term persists, however, within the AICC CMI Data Model for communication between 
content and LMSs. 

The term “Assignable Unit” has its roots in the AICC CMI guidelines4, especially related 
to representing course structure.  This derives from AICC practice.  Within the SCORM, 
an AICC AU is equivalent to a SCO, but the definition of a SCO has been narrowed 
further than the AICC’s AU definition as defined below. 

AICC defines an AU to be both: 

• The smallest unit the CMI [LMS] system assigns and tracks; and 

• A program or lesson launched by the CMI [LMS] system. 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-3 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

There are three concepts embedded here: First, an AU is small and stand-alone.  Second, 
an LMS launches an AU on the client-side.  Finally, the LMS tracks users’ progress 
through the AU, to include logging lesson completion status and performance evaluation 
results, when appropriate. 

The notion of “smallness” is subjective.  A more useful way to look at an AU (or SCO in 
the SCORM) is that it has (by definition) no separate child content components that can 
be tracked by an LMS at run-time.  An AU/SCO could in fact be a very large executable 
program, or it could be an HTML file with nothing more than, say, a single letter of 
displayable text.  Provided both examples utilize the Run-time Environment API 
correctly, either could be launched and tracked by an LMS. 

From this release forward, ADL is defining SCORM-conformant learning content objects 
as “Sharable Content Objects” (SCOs).  Wherever possible, this term will replace other 
terms that also have come to mean “content”.  In particular, the use of “Assignable Unit 
(AU)” is phased out and replaced with “Sharable Content Object (SCO).”  This is in 
response to continuing confusion about terminology. 

2.1.2. The SCORM Content Aggregation Model Nomenclature 

The SCORM Content Aggregation Model describes how lower-level sharable, reusable 
components are aggregated to compose higher-level units.  The following provides an 
overview of the components that comprise the SCORM Content Aggregation Model: 

Asset: Learning content in its most basic form is composed of Assets that are electronic 
representations of media, text, images, sound, web pages, assessment objects or other 
pieces of data that can be delivered to a Web client.  An Asset can be tagged with a Raw 
Media Meta-data XML document (see Raw Media Meta-data definition below) to form a 
“Tagged Asset” that allows for search and discovery within on-line repositories, thereby 
enhancing opportunities for reuse.  The mechanism for binding Assets to Raw Media 
Meta-data is the Content Package that will be introduced in a future version of the 
SCORM.  Figure 2.1.2a provides examples of Assets along with an example of a Tagged 
Asset in a Content Package. 

 

2-4 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
Figure 2.1.2a: Assets and Tagged Asset 

 

Sharable Content Object (SCO): A SCO represents a collection of one or more Assets 
that utilizes the SCORM Run-time Environment to communicate with LMSs.  A SCO 
represents the lowest level of granularity of content that is able to be tracked by an LMS 
using the SCORM Run-time Environment.  Figure 2.1.2b below shows an example of a 
SCO composed of several Assets. 

To be reusable, a SCO by itself should be independent of learning context.  For example, 
a SCO could be reused in different learning situations to fulfill different learning 
objectives.  In addition, one or more SCOs can be aggregated to form a higher level unit 
of instruction or training that fulfills higher level learning objectives. 

SCOs are intended to be subjectively small units, such that potential reuse across multiple 
learning objectives is feasible.  It is a specific intention of the SCORM to provide 
guidance toward the development and use of relatively small SCOs that are suitable for 
reuse.  Such content could then form the basis of sharable content repositories that enable 
exchange and enhance opportunities for reuse. 

During content design and authoring activities, when determining the size of a SCO, 
thought should be given to the smallest logical size of content that one might desire to 
have tracked by a LMS at run-time. 

A SCO can be tagged with a Content Meta-data XML document (see Content Meta-data 
definition below) to form a “Tagged SCO” that allows for search and discovery within 
on-line repositories, thereby enhancing opportunities for reuse.  The mechanism for 
binding SCOs to Content Meta-data is the Content Package that will be introduced in a 
future version of the SCORM.  Figure 2.1.2c below shows an example of a SCO 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-5 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

composed of several Assets that is tagged with Content Meta-data, bound together in a 
Content Package. 

A SCO is required to adhere to the SCORM Run-time Environment.  It must have a 
means to locate an LMS’s API Adapter and must contain the minimum API calls 
(LMSInitialize(“”) and LMSFinish(“”) ).  There is no obligation to implement any of the 
other API calls as those are optional and depend upon the nature of the content. 

Participation in the SCORM Run-time Environment also means that a SCO may only be 
launched by an LMS.  A SCO may not itself launch other SCOs. 

The requirement that a SCO participate in the SCORM Run-time Environment yields the 
following benefits: 

• Any LMS that supports the SCORM Run-time Environment can launch SCOs and 
track them, regardless of who generated them; 

• Any LMS that supports the SCORM Run-time Environment can track any SCO 
and know when it has been started and when it has ended; and 

• Any LMS that supports the SCORM Run-time Environment can launch any SCO 
in the same way. 

 
Figure 2.1.2b: SCO 

2-6 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
Figure 2.1.2c: Tagged SCO 

 

Block: A Block is a hierarchical representation of SCOs and/or other Blocks to form a 
higher level unit of instruction.  A Block may reference SCOs, and Blocks may be nested 
within other, higher level Blocks.  A Block is learning taxonomy independent allowing 
virtually any taxonomy to be represented.  The taxonomic labels applied to Blocks at 
various levels in a Block hierarchy are defined within the Content Structure Format (see 
below). 

A Block can reference an external Content Meta-data XML document (see Content Meta-
data definition below) to form a “Tagged Block” that allows for search and discovery 
within on-line repositories, thereby enhancing opportunities for reuse. 

Content Structure Format (CSF): The CSF is a hierarchical map that can be used by an 
LMS to aggregate learning content into a cohesive unit of instruction (e.g. course, 
chapter, module, etc.), apply structure and associate learning taxonomies. 

A CSF can reference an external Course Meta-data XML document (see Course Meta-
data definition below) to form a “Tagged Content Aggregation” that allows for search 
and discovery within on-line repositories, thereby enhancing opportunities for reuse.  The 
mechanism for binding aggregated content to Course Meta-data is the Content Package 
that will be introduced in a future version of the SCORM.  Figure 2.1.2d below shows an 
example of a Tagged Content Aggregation within a Content Package. 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-7 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

The CSF also provides mechanisms that define the sequence that SCOs are to be 
presented to the user. 

In this version of the SCORM, navigation and sequencing between SCOs is defined in 
the CSF to be either sequential or based on prerequisites for each SCO or Block.  The 
LMS is responsible for interpreting the intended sequence described in the CSF and 
controlling the actual sequencing of the SCOs at run-time. 

This represents a major departure from the way courseware has been developed using 
stand-alone computer-based training (CBT).  In the past, courseware content typically 
embedded all of the navigation information that governs what part of the course the 
student will view next.  In nearly all cases, authoring systems used to construct a course 
defined and implemented proprietary course sequencing methods.  Thus it was, and still 
is, difficult or impossible to share content between different authoring environments, and 
equally as difficult to reuse content in other contexts that involved different sequencing 
requirements. 

Within the SCORM, which is deliberately Web-based, SCO sequencing is defined in the 
CSF and is external to the SCO.  It is the responsibility of the LMS and not the content 
itself to launch SCOs in the appropriate defined sequence at run-time.  This is 
conceptually important because content reuse can’t really happen if the content has 
embedded information that is context specific to the course.  For example, if a SCO 
contained a “hardwired” branching to another SCO under specific conditions, it could not 
be used in a different course in which the second SCO might not be applicable or 
available.  The reusability of a SCO depends on it being independent and not tied to a 
particular aggregation. 

The SCORM recognizes, however, that some SCOs may contain internal logic to 
accomplish a particular learning task.  Such content might branch within itself depending 
on user interactions.  These branches are all self contained, relevant to a stand-alone SCO 
(and therefore reusable) and are not usually visible to the LMS.  Importantly, internal 
branching must not reference external SCOs that may or may not be present in other 
content aggregations. 

2-8 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
Figure 2.1.2d: Tagged Content Aggregation, including references to Tagged Blocks and SCOs 

 

Meta-data: Meta-data represents a mapping and recommended usage of the IEEE LTSC 
Learning Object Metadata 21 elements for each of the SCORM Content Aggregation 
Model elements.  The details of this mapping are provided in Section 2.2.  In general, 
guidance is provided for meta-data to be applied to Assets, SCOs, Blocks and CSFs to 
describe them in a consistent fashion such that they can be searched for and discovered 
within and across systems to further facilitate sharing and reuse. 

Policies governing the application of meta-data to Assets, SCOs, Blocks and CSFs should 
be defined within organizations that wish to enable reuse based on the requirements of 
those organizations.  The SCORM does not seek to impose requirements related to the 
scope of meta-data tagging of Content Aggregation Model elements, but rather seeks to 
provide practical, standards-based guidance for those organizations wishing to enable 
sharing and reuse. 

Course Meta-data: A definition for meta-data that describes the aggregate of 
content represented in a CSF.  The purpose of applying Course Meta-data is to 
make the content aggregation accessible (enabling discoverability) within a 
courseware repository and to provide descriptive information about the 
aggregated content represented by the CSF as a whole, autonomous unit. 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-9 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Content Meta-data: A definition of meta-data that can be applied to SCOs and 
Blocks that provides descriptive information about the content represented in the 
SCO or Block.  This meta-data is used to facilitate reuse and discoverability of 
such content within, for example, a content repository. 

Raw Media Meta-data: A definition of meta-data that can be applied to “raw 
media” Assets that provides descriptive information about the Asset independent 
of any usage or potential usage within courseware content.  This meta-data is used 
to facilitate reuse and discoverability, principally during content creation, of such 
Assets within, for example, an Asset repository. 

2.1.3. Meta-Data 

The means to describe and identify learning content is key to enabling reuse.  Meta-data 
(data about data), when clearly defined for a particular domain, provides critical insight 
into the nature, purpose and qualities of privately authored material.  This information 
can form the basis of learning content libraries (repositories) and can provide content 
developers the ability to search and retrieve pre-existing material appropriate to the 
instructional task at hand.  Section 2.2 provides specific guidance for applying meta-data 
to learning content. 

2.1.4. Content Structure Format 

The process of designing and constructing a course involves the building of a set of 
relationships among small, granular learning content objects.  It is the purpose of the 
Content Structure Format (CSF) to provide the content developer with a means for 
aggregating Blocks into a cohesive unit of instruction, applying structure and associating 
learning taxonomies so that the structure and behavior can be uniformly represented, 
communicated and reproduced across LMS environments.  Section 2.3 describes the 
CSF. 

2.1.5. Content Packaging 

A CSF representation is a necessary component for moving learning content from one 
place to another.  However, a CSF definition is insufficient by itself.  To physically move 
learning content from one place to another, all of the learning content resources must be 
gathered and packaged for movement. 

Packaging is the process of identifying all resources necessary to represent learning 
content, and then physically bundling all of these resources together with a manifest 
(packing slip) to allow for movement from one environment to another. 

During the preparation of this version of the SCORM, work continued among industry 
groups to develop a content packaging specification.  As of December 2000, the IMS 
Content Packaging Specification20 was released as a public draft by the IMS Global 

2-10 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Learning Consortium, Inc.3 technical board.  It is anticipated that ADL will add the IMS 
Content Packaging Specification20 to the SCORM Version 1.2. 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-11 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 

2-12 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

2.2. Meta-Data 

2.2.1. Overview 

The purpose of meta-data (data about data) is to provide a common nomenclature so that 
learning content can be self-describing.  Learning content that is tagged with self-
describing meta-data can be systematically searched for and retrieved for use and reuse. 

Meta-data for learning content, has been under development within a number of national 
and international organizations over the past few years.  ADL has looked to the IEEE 
Learning Technology Standards Committee (LTSC) Standard for Information 
Technology -- Education and Training Systems -- Learning Objects and Metadata 
Working Group2, the IMS Global Learning Consortium, Inc.3 and the Alliance of Remote 
Instructional Authoring and Distribution Networks for Europe (ARIADNE)12 as the 
bodies that are defining meta-data specifically for learning content.  These groups, which 
have been working collaboratively, have developed a core set of specifications to which 
this document refers. 

The SCORM references the IMS Learning Resource Meta-data Information Model22, 
itself based on the IEEE Learning Technology Standards Committee (LTSC) Learning 
Objects Metadata (LOM) Specification21 that was developed as a result of a joint effort 
between the IMS Global Learning Consortium, Inc.3 and the Alliance of Remote 
Instructional Authoring and Distribution Networks for Europe (ARIADNE)12 to define a 
standard set of meta-data element definitions that can be used to describe learning 
objects.  The SCORM has adopted the same set of meta-data elements described in the 
IMS Learning Resource Meta-data Information Model22.  The SCORM also references 
the IMS Learning Resource Meta-data XML Binding Specification22.  This binding 
specification provides an XML representation for the IMS Learning Resource Meta-data 
Information Model22.  The SCORM applies the IMS meta-data element definitions to 
three learning content components: raw media, content and course.  These three 
components define the meta-data portion of the SCORM Content Aggregation Model.  
This mapping of standardized definitions from IMS and IEEE to the SCORM Content 
Aggregation Model provides the missing link between general specifications and specific 
content models.  The following sections define the SCORM application of IMS and IEEE 
definitions to the meta-data portion of the SCORM Content Aggregation Model. 

2.2.2. Definitions of the SCORM Meta-Data Elements 

The SCORM identifies three types of learning content meta-data: raw media, content and 
course.  The following sections define these three types of meta-data. 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-13 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

2.2.2.1. Raw Media Meta-Data 

Raw Media Meta-data is meta-data that can be applied to Assets such as illustrations, 
documents, or media streams that provides descriptive information about the Assets 
independent of learning content.  Keep in mind that Assets are never stand-alone within a 
content aggregation but are conceptually contained within a Sharable Content Object 
(SCO).  This meta-data is used to facilitate reuse and discoverability principally during 
learning content creation of such Assets within, for example, an Asset repository.  Raw 
media meta-data is: 

• Meta-data that describes Assets in a non-context specific way 

• Information that can be searched externally such as Asset title, description, date of 
creation and version 

• Information that can be used to create a searchable repository of sharable Assets. 

2.2.2.2. Content Meta-Data  
Content Meta-data is meta-data that can be applied to SCOs and Blocks that provides 
descriptive information about the learning content independent of a particular content 
aggregation.  This meta-data is used to facilitate reuse and discoverability of such 
learning content within, for example, a learning content repository.  Content meta-data is: 

• Meta-data that describes SCOs and Blocks 

• Meta-data that is not related to a specific content aggregation structure (i.e., 
context independent meta-data) 

• Information that can be searched externally such as content title, description, date 
of creation and version. 

2.2.2.3. Course Meta-Data 

Course Meta-data is meta-data that describes a content aggregation defined by a Content 
Structure Format.  This meta-data is used to facilitate reuse and discoverability within a 
courseware repository and to provide descriptive information about the content 
aggregation.  Course meta-data is: 

• Information about a content aggregation as a whole that describes what it is for, 
who can use it, who controls it, etc; and   

• Information that can be searched externally such as the course title, course 
description and version. 

2-14 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

2.2.3. The SCORM Meta-Data Mapping 

This section presents a table that lists the SCORM meta-data elements contained in the 
SCORM Content Aggregation Model.  The table consists of four columns as described in 
the sections below. 

2.2.3.1. Element Name and Description 
This column lists the meta-data elements used to describe a resource (learning content) as 
defined by the IMS Learning Resource Meta-data Information Model22.  There are nine 
categories of meta-data elements: 

1. The General category groups the general information that describes the resource 
as a whole. 

2. The Lifecycle category groups the features related to the history and current state 
of this resource and those who have affected this resource during its evolution. 

3. The Meta-metadata category groups information about the meta-data record itself 
(rather than the resource that the record describes). 

4. The Technical category groups the technical requirements and characteristics of 
the resource. 

5. The Educational category groups the educational and pedagogic characteristics of 
the resource. 

6. The Rights category groups the intellectual property rights and conditions of use 
for the resource. 

7. The Relation category groups features that define the relationship between this 
resource and other targeted resources. 

8. The Annotation category provides comments on the educational use of the 
resource and information on when and by whom the comments were created. 

9. The Classification category describes where this resource falls within a particular 
classification system. 

The elements are numbered hierarchically by group.  An element may be composed of 
sub-elements.  The numbering scheme reflects these relationships. 

Each element contains a description including data formatting restrictions and 
vocabularies.  Data formatting restrictions include constraints on the length of data 
contained by the element, and in some cases, the type of data that the element can 
contain.  There are two varieties of vocabularies: restricted and best practice.  A restricted 
vocabulary means that the element must contain a value from the list provided as part of 
the element’s description.  A “best practice” vocabulary presents a recommended list of 
appropriate values for that element, but the element is not mandated to contain a value 
from the list.  However, meta-data elements that rely on the recommended best practice 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-15 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

values will have the highest degree of semantic interoperability, i.e. the likelihood that 
such meta-data will be understood by other end users is highest. 

This column also provides example usage for all of the mandatory elements and some of 
the optional elements following the IMS Learning Resource Meta-data XML Binding 
Specification22.  Section 4 provides complete examples of meta-data documents.  It is 
important to note that the SCORM does not provide specific guidance beyond 
vocabularies and formatting restrictions pertaining to the use of the meta-data elements.  
It is left to organizations and communities to provide specific guidance on how the meta-
data elements are to be applied within their organization and community.  The examples 
present one view of how the element can be used. 

Lastly, this column identifies the multiplicity of the element.  Multiplicity indicates if the 
element can occur more than once.  If the element can occur more than once a minimum 
supported value is also given.  The minimum supported value indicates the minimum 
number of occurrences that an application must support.  For example, the element 
catalogentry (number 1.3 in the table below) can occur zero or more times with a 
supported value of eight.  This means that the element can occur multiple times and that 
an application that supports the SCORM meta-data is required to handle at a minimum, 
eight occurrences of the element.  Applications may choose to support more than the 
minimum supported number of occurrences, but there is no guarantee beyond the 
minimum. 

2.2.3.2. SCORM Raw Media, Content, Course 
These three columns define how each meta-data element is to be applied to that meta-data 
portion of the SCORM Content Aggregation Model, and which elements must be used 
when building meta-data documents.  An “M” value denotes a mandatory element, an 
“O” value denotes an optional element and an “R” value denotes a reserved element.  
Elements marked as reserved are not to be used.  Elements that are marked as reserved 
are placeholders for future usage.  The reserved values are not present in the meta-data 
XML Document Type Definition (DTD) and therefore must be avoided.  Note that 
mandatory and optional values may impact the multiplicity value described above.  For 
example, if the multiplicity is zero or more occurrences, but the element is a mandatory 
element within the SCORM Content Aggregation Model, then there must be at least one 
occurrence of the element in the meta-data.  In the cases where the element is mandatory 
for all three of the meta-data types, the multiplicity has been modified to reflect that at 
least one occurrence is necessary.  If the element is optional for some of the meta-data 
types, but mandatory for others, the multiplicity will be zero or one/more in column one 
of the table and gets overridden to at least one occurrence if the element is mandatory for 
the meta-data type.  An example of this in the table below is catalogentry.  For the raw 
media meta-data type, the element can occur zero or more times because it is optional.  
However, for content meta-data, the element must occur at least once because it is 
mandatory. 

 

2-16 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

1. general 
Description: This category groups the general information that describes 
this resource as a whole. 

Example: 
<general> 
   <title> 
      <langstring>Maritime Navigation</langstring> 
   </title> 
   <catalogentry> 
      <catalogue>ADL Sample Courses Catalog</catalogue> 
      <entry> 
         <langstring>Course01</langstring> 
      </entry> 
   </catalogentry> 
   <description> 
      <langstring>The purpose of this course…</langstring> 
   </description> 
   <keywords> 
      <langstring>maritime navigation</langstring> 
      <langstring>sailing conditions</langstring> 
   </keywords> 
</general> 
Multiplicity: 1 

M M M 

1.1. identifier 
Description: A globally unique label that identifies this resource.  
This is reserved and shall not be used, as there is no uniformly 
accepted method for the creation and distribution of a globally 
unique identifiers. 

Example: None Provided 

Multiplicity: 0 (reserved for future use) 

R R R 

1.2. title 
Description: Name given to this resource.  

Maximum 1024 characters, bound within a langstring element. 

Example: 
<title> 
    <langstring>Maritime Navigation</langstring> 
</title> 
Multiplicity: 1 

M M M 

1.3. catalogentry 
Description: This sub-category defines an entry within a catalog 
(i.e. a listing identification system) assigned to this resource.  

It is intended to describe this resource according to some known 

O M M 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-17 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

cataloging system so that it may be externally searched for and 
located according to the methodology of the specified system.  

It may be used as a functional replacement for the element 
1.1:General.Identifier, as that is currently reserved. 

Example: 
<catalogentry> 
    <catalogue>ADL Sample Courses Catalog</catalogue> 
    <entry> 
       <langstring>Course01</langstring> 
    </entry> 
</catalogentry> 
Multiplicity: 0 or More; up to 8 supported 

1.3.1. catalogue 
Description: The name of the catalog (i.e. listing identification 
system). 

Maximum 1024 characters. 

Example: 
<catalogue>ADL Sample Courses Catalog</catalogue> 

Multiplicity: 0 or 1 

O 
 

M M 

1.3.2. entry 
Description: Actual value of the entry within the catalog (i.e. 
listing identification system). 

Maximum 1024 characters, bound within a langstring element. 

Example: 
<entry> 
    <langstring>Course01</langstring> 
</entry> 

Multiplicity: 0 or 1 

O M M 

1.4. language 
Description: The primary human language used within this 
resource to communicate to the intended user.  This language is 
the language used within the resource being described. 

Must be expressed as per ISO 63923 & ISO 316624 standards. 

Maximum 128 characters. 

Example:  
<language>en-US</language> 

Multiplicity: 0 or More; up to 8 supported 

O O O 

1.5. description 
Description: A textual description of the content of this resource 

M M M 

2-18 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

being described. 

Maximum 2048 characters, bound within a langstring element. 

Example: 
<description> 
    <langstring>The purpose of this course…</langstring> 
</description> 
Multiplicity: 1 or More; up to 8 supported 

1.6. keywords 
Description: Keywords or phrases describing this resource. 

This element should not be used for characteristics that can be 
described by other elements. 

Maximum 1024 characters, bound within a langstring element. 

Example: 
<keywords> 
    <langstring>maritime navigation</langstring> 
    <langstring>sailing conditions</langstring> 
</keywords> 
Multiplicity: 0 or More; up to 8 supported 

O M M 

1.7. coverage 
Description: The span or extent of such things as time, culture, 
geography or region that applies to this resource. 

Maximum 1024 characters, bound within a langstring element. 

Example: 
<coverage> 
    <langstring>1990-2000</langstring> 
</coverage> 
Multiplicity: 0 or More; up to 8 supported 

O O O 

1.8. structure 
Description: Underlying organizational structure of this resource. 

Restricted Vocabulary: 
User_defined 
See_classification 
Collection 
Mixed 
Linear 
Hierarchical 
Networked 
Branched 
Parceled 
Atomic 

Maximum 32 characters, bound within langstring element. 

Example: None Provided 

O O O 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-19 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

Multiplicity: 0 or 1 

1.9. aggregationlevel 
Description: The functional granularity of this resource. 

Restricted Vocabulary: 
0 --  defined as smallest level of aggregation, e.g. raw 

media data or fragments. 
1 --  defined as a collection of atoms, e.g. an HTML 

document with some embedded pictures or a lesson. 
2 --  defined as a collection of level 1 resources, e.g. a 'Web' 

of HTML documents, with an index page that links the 
pages together or a unit. 

3 --  defined as the largest level of granularity, e.g. a course. 
Maximum 8 characters, numeric value 0 through 3 must be used 

Example: 
<aggregationlevel>2</aggregationlevel> 
Multiplicity: 0 or 1 

O O O 

2. lifecycle 
Description: This category describes the history and current state of this 
resource and those who have affected this resource during its evolution. 

Example: 
<lifecycle> 
   <version> 
      <langstring>1.0</langstring> 
   </version> 
   <status> 
      <langstring>Final</langstring> 
   </status> 
</lifecycle> 
Multiplicity: 0 or 1 

O M M 

2.1. version 
Description: The edition of this resource. 

Maximum 64 characters, bound within a langstring element. 

Example: 
<version> 
   <langstring>1.0</langstring> 
</version> 
Multiplicity: 0 or 1 

O M M 

2.2. status 
Description: The state or condition this resource is in.  

Restricted Vocabulary: 
User_defined 

O M M 

2-20 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

See_classification  
Draft 
Final 
Revised 
Unavailable 

Maximum 64 characters, bound within a langstring element. 

Example: 
<status> 
   <langstring>Final</langstring> 
</status> 
Multiplicity: 0 or 1 

2.3. contribute 
Description: This sub-category describes those people or 
organizations that have affected the state of this resource during 
its evolution (includes creation, edits and publication). 

Note: This sub-category is different from 
3.3:MetaMetaData.Contribute. 

Example: 
<contribute> 
   <role> 
      <langstring>Content Provider</langstring> 
   </role> 
   <centity> 
      <vcard> 
         begin:vCard 
         org:ACME INC. 
         Addr:101 Main St.;Goodtown;VA;USA 
         Email:info@acme.com 
         end:vCard 
      </vcard> 
   </centity> 
   <date> 
      <datetime>2000-08-05</datetime> 
   </date> 
</contribute> 
<!-- Notice the use of multiple contribute elements to obtain 
multiple role elements  --> 
<contribute> 
   <role> 
      <langstring>Author</langstring> 
   </role> 
   <centity> 
      <vcard> 
         begin:vCard 
         fn:Jane Doe 
         Email:janedoe@acme.com 
         end:vCard 
      </vcard> 

O O O 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-21 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

   </centity> 
</contribute> 
Multiplicity: 0 or More; up to 32 supported 

2.3.1. role 
Description: Kind of contribution. 

Best Practice Vocabulary: 
User_defined 
See_classification 
Author 
Publisher 
Unknown 
Initiator 
Terminator 
Validator 
Editor 
Graphical Designer 
Technical Implementer 
Content Provider 
Technical Validator 
Educational Validator 
Script Writer 
Instructional Designer 

Note: It is recommended that exactly one instance of Author 
exists. 

Maximum 128 characters, bound within a langstring element. 

Example: 
<role> 
   <langstring>Author</langstring> 
</role> 
Multiplicity: 0 or 1 

O O O 

2.3.2. centity 
Description: The identification of and information about the 
people or organizations contributing to this resource, most 
relevant first. 

If 2.3.1:LifeCycle.Contribute.Role equals Author, then the 
entity should be a person. 

If 2.3.1:LifeCycle.Contribute.Role equals Publisher, then the 
entity should be an organization. 

If 2.3.1:LifeCycle.Contribute.Role is not equal to Author or 
Publisher, then this element shall be a Contributor. 

If the entity is an organization, then it should be a university 
department, company, agency, institute, etc. under whose 
responsibility the contribution was made. 

Note: This is a vCard25 element. 

O O O 

2-22 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

Maximum 1024 characters. 

Example: 
<centity> 
    <vcard> 
        begin:vCard 
        org:Advanced Distributed Learning (ADL) 
        addr:ADL Co-Laboratory;1901 N. 
Beauregard;Alexandria;VA;USA 
        email:someone@adlnet.org 
        end:vCard 
    </vcard> 
</centity> 
Multiplicity: 0 or More; up to 8 supported 

2.3.3. date  
Description: This sub-category defines the date of the 
contribution. 

Must be bound as a DateType that may contain a datetime 
element expressed as per ISO 860126 standard and a description 
element. 

Example: 
<date> 
   <datetime>2000-01-27</datetime> 
   <description>contribution date</description> 
</date> 
Multiplicity: 0 or 1 

O O O 

3. metametadata 
Description: This category describes the specific information about this 
meta-data record itself (rather than the resource that this record 
describes). 

This category describes such things as who created this meta-data record, 
how, when and with what references. 

Example: 
<metametadata> 
   <metadatascheme>ADL SCORM 1.1</metadatascheme> 
</metametadata> 
Multiplicity: 1 

M M M 

3.1. identifier 
Description: A globally unique label that identifies this meta-data 
record. 

This is reserved and shall not be used, as there is no uniformly 
accepted method for the creation and distribution of a globally 
unique indentifiers. 

Example: None Provided 

R 
 

R R 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-23 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

Multiplicity: 0 (reserved for future use) 

3.2. catalogentry 
Description: This sub-category defines an entry within a catalog 
(i.e. listing identification system), given to the meta-data instance. 

It is intended to describe this meta-data instance according to 
some known cataloging system so that it may be externally 
searched for and located according to that system. 

This element may be used as a functional replacement for the 
currently reserved element 3.1:MetaMetaData.Identifier. 

Example: 
<catalogentry> 
   <catalogue>ADL Meta-data</catalogue> 
   <entry> 
      <langstring>2000.001.20</langstring> 
   <entry> 
<catalogentry> 
Multiplicity: 0 or More; up to 8 supported 

O O O 

3.2.1. catalogue 
Description: The name of the catalog (i.e. listing identification 
system). 

Maximum 1024 characters. 

Example: 
<catalogue>ADL Meta-data</catalogue> 

Multiplicity: 0 or 1 

O O O 

3.2.2. entry 
Description: Actual string value of the entry in the catalog. 

Maximum 1024 characters, bound within langstring element. 

Example: 
<entry> 
   <langstring>2000.001.20</langstring> 
<entry> 

Multiplicity: 0 or 1 

O O O 

3.3. contribute 
Description: This sub-category describes those people or 
organizations that have affected the state of this meta-data 
instance during its evolution (includes creator and validator). 

This element is different from 2.3:Lifecycle.Contribute. 

Example: None Provided 

Multiplicity: 0 or More; up to 8 supported 

O O O 

2-24 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

3.3.1. role 
Description: Kind of contribution. 

Best Practice Vocabulary: 
User_defined 
See_classification 
Creator 
Validator 

Note: It is recommended that exactly one instance of Creator 
exists. 

Maximum 128 characters, bound within a langstring element. 

Example: None Provided 

Multiplicity: 0 or 1 

O O O 

3.3.2. centity 
Description: The identification of and information about the 
people or organizations contributing to this meta-data instance, 
most relevant first. 

Note: This is a vCard25 element. 

Maximum 1024 characters. 

Example: None Provided 

Multiplicity: 0 or More; up to 8 supported 

O O O 

3.3.3. date 
Description: The date of the contribution. 

Must be bound as a DateType that may contain a datetime 
element expressed as per ISO 860126 standard and a description 
element. 

Example: 
<date> 
   <datetime>2000-01-27</datetime> 
   <description>contribution date</description> 
</date> 
Multiplicity: 0 or 1 

O O O 

3.4. metadatascheme 
Description: The name and version of the authoritative 
specification used to create this meta-data instance. 

This element may be user selectable or system generated. 

If multiple values are provided, then the meta-data instance shall 
conform to multiple meta-data schemes. 

Maximum 32 characters. 

M M M 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-25 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

Example: 
<metadatascheme>ADL SCORM 1.1</metadatascheme> 
Multiplicity: 1 or More; up to 8 supported 

3.5. language 
Description: Language of this meta-data instance.  This is the 
default language for all langstring values in this meta-data 
instance. 

Note: This can be a different language than that of the content 
being described. 

Maximum 128 characters. 

Example: 
<language>en-US</language> 
Multiplicity: 0 or 1 

O O O 

4. technical 
Description: This category describes the technical requirements and 
characteristics of this resource. 

Example: 
<technical> 
   <format> 
      <langstring>application/x-authorware-map</langstring> 
   </format> 
   <location>ADL Repository A23</location> 
</technical> 
Multiplicity: 1 

M M M 

4.1. format 
Description: Technical data type of this resource. 

This element shall be used to identify the software needed to 
access the resource. 

Restricted Vocabulary: 
MIME type  

(e.g. video/mpeg, application/x-toolbook, text/html) 
non-digital 

Can be used to identify the software needed to access the 
resource. 

Maximum 512 characters, bound within a langstring element. 

Example: 
<format> 
   <langstring>application/x-authorware-map</langstring> 
</format> 
Multiplicity: 1 

M M M 

2-26 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

4.2. size 
Description: The size of the digital resource in bytes.  Only the 
digits '0'..'9' should be used; the unit is bytes, not MBytes, GB, 
etc. 

This element shall refer to the actual size of this resource, and not 
to the size of a compressed version of this resource. 

Maximum 32 characters. 

Example: 
<size>535000</size> 
Multiplicity: 0 or 1 

O O O 

4.3. location 
Description: A string that is used to access this resource.  It may 
be a location (e.g. Universal Resource Locator (URL)27), or a 
method that resolves to a location (e.g. Universal Resource 
Identifier (URI)27). 

Note: Relative URL’s are permitted if the URL is relative to the 
location of this meta-data record. 

Preferable location first. 

This is where the learning resource described by this meta-data 
instance is physically located. 

Maximum 1024 characters. 

Example: 
<location>ADL Repository A23</location> 
Multiplicity: 1 or More; up to 8 supported 

M M M 

4.4. requirements 
Description: This sub-category describes the technical 
capabilities required in order to use this resource. 

If there are multiple requirements, then all are required, i.e. the 
logical connector is AND. 

Example: 
<requirements> 
   <type> 
      <langstring>Browser</langstring> 
   </type> 
   <name> 
      <langstring>Microsoft Internet Explorer</langstring> 
   </name> 
   <minimumversion>4.0</minimumversion> 
   <maximumversion>5.1</maximumversion> 
</requirements> 
Multiplicity: 0 or More; up to 8 supported 

O O O 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-27 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

4.4.1. type 
Description: The technology required to use this resource, i.e. 
hardware, software, network, etc 

Best Practice Vocabulary: 
User_defined 
See_classification 
Operating System 
Browser 

Maximum 32 characters, bound within a langstring element. 

Example: 
<type> 
   <langstring>Browser</langstring> 
</type> 
Multiplicity: 0 or 1 

O O O 

4.4.2. name 
Description: Name of the required technology to use this 
resource. 

The value for this element may be derived from 
4.1:Technical.Format automatically, e.g., "video/mpeg" implies 
"Multi-OS". 

Best Practice Vocabulary: 
User_defined 
See_classification 

If  4.4.1:Technical.Requirements.Type = 'Operating System' 
PC-DOS  
MS-Windows  
MacOS  
Unix  
Multi-OS  
Other  
None  

If  4.4.1:Technical.Requirements.Type = 'Browser' 
Any 
Netscape Communicator 
Microsoft Internet Explorer 
Opera 

If  4.4.1:Technical.Requirements.Type = something other then 
Open Vocabulary 

Maximum 1024 characters, bound within a langstring element. 

Example: 
<name> 
   <langstring>Microsoft Internet Explorer</langstring> 
</name> 
Multiplicity: 0 or 1 

O O O 

2-28 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

4.4.3. minimumversion 
Description: Lowest possible version of the required 
technology to use this resource. 

Maximum 32 characters. 

Example: 
<minimumversion>4.0</minimumversion> 
Multiplicity: 0 or 1 

O O O 

4.4.4. maximumversion 
Description: Highest version of the technology known to 
support the use of this resource. 

Maximum 32 characters. 

Example: 
<maximumversion>5.1</maximumversion> 
Multiplicity: 0 or 1 

O O O 

4.5. installationremarks 
Description: Description on how to install this resource. 

Maximum 1024 characters, bound within a langstring element. 

Example: 
<installationremarks> 
   <langstring>Must have Macromedia Shockwave Web Player 
plug-in pre-installed.</langstring> 
</installationremarks> 
Multiplicity: 0 or 1 

O O O 

4.6. otherplatformrequirements 
Description: Information about other software and hardware 
requirements. 

Maximum 1024 characters, bound within a langstring element. 

Example: 
<otherplatformrequirements> 
   <langstring>will not run with XYZ video card</langstring> 
</otherplatformrequirements> 
Multiplicity: 0 or 1 

O O O 

4.7. duration 
Description: Time continuous resource takes when played at 
intended speed. 

This is especially useful for sounds, movies or animations. 

Must be bound as a DateType that may contain a datetime 
element expressed as per ISO 860126 standard and a description 

O O O 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-29 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

element. 

Example: 
<duration> 
   <datetime>01:30:00</datetime> 
   <description>duration time</description> 
</duration> 
Multiplicity: 0 or 1 

5. educational 
Description: This category describes the key educational or pedagogic 
characteristics of this resource. 

This is the pedagogical information essential to those involved in 
achieving a quality learning experience.  The audience for this meta-data 
includes teachers, managers, authors and learners. 

Example: None Provided 

Multiplicity: 0 or 1 

O O O 

5.1. interactivitytype 
Description: The flow of interaction between this resource and 
the intended user. 

Restricted Vocabulary:  
User_defined 
See_classification 
Active 
Expositive 
Mixed 
Undefined 

In an expositive resource, the information flows mainly from this 
resource to the learner.  Expositive documents are typically used 
for learning-by-reading.  These  include essays, video clips, 
graphical material and hypertext documents. 

In an active resource, information also flows from the learner to 
this resource.  Active documents are typically used for learning-
by-doing.  These include simulations, questionnaires and 
exercises. 

Activating links to navigate in hypertext documents is not 
considered as an information flow.  Thus, hypertext documents 
are expositive. 

Maximum 32 characters, bound within a langstring element. 

Example: None Provided 

Multiplicity: 0 OR 1 

O O O 

5.2. learningresourcetype 
Description: Specific kind of resource, most dominant kind first. 

The vocabulary is adapted for the specific purpose of learning

O O O 

2-30 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

objects. 

Best Practice Vocabulary: 
User_defined 
See_classification 
Exercise 
Simulation 
Questionnaire 
Diagram 
Figure 
Graph 
Index 
Slide 
Table 
Narrative Text 
Exam 
Experiment 
ProblemStatement 
SelfAssesment 

Maximum 1024 characters, bound within a langstring element. 

Example: 
<learningresourcetype> 
   <langstring>Narrative Text</langstring> 
</learningresourcetype> 
Multiplicity: 0 or More; up to 8 supported 

5.3. interactivitylevel 
Description: This element shall define the degree of interactivity 
between the end user and this resource. 

Restricted Vocabulary: 
0 -- defined as "Very Low" 
1 -- defined as "Low" 
2 -- defined as "Medium" 
3 -- defined as "High" 
4 -- defined as "Very High" 

Maximum 8 characters - numeric value 0 through 4 must be used. 

Example: 
<interactivitylevel>3</interactivitylevel> 
Multiplicity: 0 or 1 

O O O 

5.4. semanticdensity  
Description: This element defines a subjective measure of this 
resource's usefulness as compared to its size or duration. 

Restricted Vocabulary: 
0 -- defined as "Very Low" 
1 -- defined as "Low" 
2 -- defined as "Medium" 
3 -- defined as "High" 

O O O 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-31 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

4 -- defined as "Very High" 
Maximum 8 characters - numeric value 0 through 4 must be used. 

Example: None Provided 

Multiplicity: 0 or 1 

5.5. intendedenduserrole 
Description: Principal user(s) for which this resource was 
designed, most dominant first. 

Restricted Vocabulary: 
Teacher 
Author 
Learner 
Manager 

A learner works with a resource in order to learn something. 
An author creates or publishes a resource. 
A manager manages the delivery of the resource, e.g., a university 
or college.  The document for a manager is typically a curriculum. 

Maximum 32 characters, bound within a langstring element. 

Example: None Provided 

Multiplicity: 0 or More; up to 4 supported 

O O O 

5.6. learningcontext 
Description: The principal environment within which the 
learning and use of this resource is intended to take place. 

Best Practice Vocabulary: 
User_defined 
See_classification 
Primary Education 
Secondary Education 
Higher Education 
University First Cycle 
University Second Cycle 
University Postgrade 
Technical School First Cycle 
Technical School Second Cycle 
Professional Formation 
Continuous Formation 
Vocational Training 
Other 

Maximum 128 characters, bound within a langstring element. 

Example: None Provided 

Multiplicity: 0 or More; up to 8 supported 

O O O 

5.7. typicalagerange 
Description: Age of the typical intended user. 

O O O 

2-32 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

This element shall refer to developmental age, if that would be 
different from chronological age. 

The age of the learner is important for finding resources, 
especially for school age learners and their teachers. 

When applicable, the string should be formatted as minage-
maxage or minage-. (This is a compromise between adding three 
subfields (minAge, maxAge and description) and having just a 
free text field.) 

Various reading age schemes, IQ's or developmental age 
measures should be represented through the 9:Classification 
category 

Maximum 1024 characters, bound within a langstring element. 

Example: None Provided 

Multiplicity: 0 or More; up to 4 supported 

5.8. difficulty 
Description: This element defines how hard it is to work through 
this resource for the typical target audience. 

Restricted Vocabulary: 
0 -- defined as "Very Easy" 
1 -- defined as "Easy" 
2 -- defined as "Medium" 
3 -- defined as "Difficult" 
4 -- defined as "Very Difficult" 

Maximum 8 characters – numeric value 0 through 4 must be used. 

Example: None Provided 

Multiplicity: 0 or 1 

O O O 

5.9. typicallearningtime 
Description: Approximate or typical time it takes to work with 
this resource. 

Must be bound as a DateType that may contain a datetime 
element expressed as per ISO 860126 standard and a description 
element. 

Example: 
<typicallearningtime> 
   <datetime>02:00:00</datetime> 
   <description>typical learning time</description> 
</typicallearningtime> 
Multiplicity: 0 or 1 

O O O 

5.10. description 
Description: Comments on how this resource is to be used. 

O O O 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-33 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

E.g., Teacher guidelines that come with a textbook. 

Maximum 1024 characters, bound within a langstring element. 

Example: None Provided 

Multiplicity: 0 or 1 

5.11. language 
Description: The human language used by the typical intended 
user of the resource. 

LanguageID = Langcode('-'Subcode)*, with Langcode a two-letter 
language code as defined by ISO 63923 and Subcode a country 
code from ISO 316624.  e.g., “en", "en-GB", "de", "fr-CA", "it" 

Maximum 128 characters. 

Example: 
<language>en-US</language> 
Multiplicity: 0 or More; up to 8 supported 

O O O 

6. rights 
Description: This category describes the intellectual property rights and 
conditions of use for this resource. 

The intent is to reuse results of ongoing work in the Intellectual Property 
Right and e-commerce communities. This category currently provides the 
absolute minimum level of detail only. 

Example: 
<rights> 
   <cost> 
      <langstring>no</langstring> 
   </cost> 
   <copyrightandotherrestrictions> 
      <langstring>yes</langstring> 
   </copyrightandotherrestrictions> 
</rights> 
Multiplicity: 1 

M M M 

6.1. cost 
Description: Whether use of the resource requires payment. 

Restricted Vocabulary: 
User_defined 
See_classification 
yes 
no 

Maximum 8 characters, bound within a langstring element. 

Example: 
<cost> 
   <langstring>no</langstring> 

M M M 

2-34 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

</cost> 
Multiplicity: 1 

6.2. copyrightandotherrestrictions 
Description: Whether copyright or other restrictions apply to the 
use of this resource. 

Restricted Vocabulary:  
User_defined 
See_classification 
yes 
no 

Maximum 8 characters, bound within a langstring element. 

Example: 
<copyrightandotherrestrictions> 
   <langstring>yes</langstring> 
</copyrightandotherrestrictions> 
Multiplicity: 1 

M M M 

6.3. description  
Description: Comments on the conditions of use of this resource. 

Maximum 1024 characters, bound within a langstring element. 

Example: 
<description> 
   <langstring>Copyright 2000 ACME, INC.</langstring> 
</description> 
Multiplicity: 0 or 1 

O O O 

7. relation 
Description: This category defines the relationship between this resource 
and other resources, if any. 

To define multiple relationships there may be multiple instances of this 
category.  If there is more than one target resource, then each target is 
covered by a new relationship instance. 

Example: None Provided 

Multiplicity: 0 or More; up to 32 supported 

O O O 

7.1. kind 
Description: Nature of the relationship between this resource and 
the target resource, identified by 7.2:Relation.Resource. 

Best Practice Vocabulary (from Dublin Core28): 
User_defined 
See_classification 
IsPartOf 
HasPart 

O O O 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-35 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

IsVersionOf 
HasVersion 
IsFormatOf 
HasFormat 
References 
IsReferencedBy 
IsBasedOn 
IsBasisFor 
Requires 
IsRequiredBy 

Maximum 1024 characters, bound within a langstring element. 

Example: None Provided 

Multiplicity: 0 or 1 

7.2. resource 
Description: The target resource that this relationship references. 

Example: None Provided 

Multiplicity: 0 or 1 

O O O 

7.2.1. identifier 
Description: Unique Identifier of the target resource.  

This is reserved and shall not be used. 

Example: None Provided 

Multiplicity: 0 (reserved for future use) 

R R R 

7.2.2. description 
Description: Description of the target resource.  Gives a more 
detailed description of the elements in this sub-category 
(relation). 

Maximum 1024 characters, bound within a langstring element. 

Example: None Provided 

Multiplicity: 0 or 1 

O O O 

8. annotation 
Description: This category provides comments on the educational use of 
this resource, who created this annotation and when. 

When multiple annotations are needed, multiple instances of this 
category may be used. 

Example: None Provided 

Multiplicity: 0 or More; up to 32 supported 

O O O 

8.1. centity 
Description: The person who created this annotation. 

O O O 

2-36 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

Note: This is a vCard25 element. 

Maximum 1024 characters 

Example: None Provided 

Multiplicity: 0 or 1 

8.2. date 
Description: Date that this annotation was created. 

Must be bound as a DateType that may contain a datetime 
element expressed as per ISO 860126 standard and a description 
element. 

Example: 
<date> 
   <datetime>2000-01-27</datetime> 
   <description>annotation date</description> 
</date> 
 

Multiplicity: 0 or 1 

O O O 

8.3. description 
Description: The content of this annotation.  Gives a more detailed 
description of the elements in this sub-category (annotation). 
Maximum 1024 characters, bound within a langstring element. 

Example: None Provided 

Multiplicity: 0 or 1 

O O O 

9. classification 
Description: This category describes where this resource is placed 
within a particular classification system. 

To define multiple classifications, there may be multiple instances of this 
sub-category. 

Example: 
<classification> 
   <purpose> 
      <langstring>Educational Objective</langstring> 
   </purpose> 
   <description> 
      <langstring>Content Authors will learn to use Mandatory and 
Optional data model and API</langstring> 
   </description> 
   <keywords> 
      <langstring>API</langstring> 
      <langstring>data model</langstring> 
      <langstring>content authoring</langstring> 
   </keywords> 
</classification> 

O M M 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-37 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

Multiplicity: 0 or More; up to 10 supported 

9.1. purpose 
Description: The purpose of classifying this resource. 

Best Practice Vocabulary: 
User_defined 
See_classification 
Discipline 
Idea 
Prerequisite 
Educational Objective 
Accessibility Restrictions 
Educational Level 
Skill Level 
Security Level 

Maximum 128 characters, bound within a langstring element. 

Example: 
<purpose> 
   <langstring>Educational Objective</langstring> 
</purpose> 
Multiplicity: 0 or 1 

O M M 

9.2. taxonpath 
Description: This sub-category describes a taxonomic path in a 
specific classification system.  Each succeeding level is a 
refinement in the definition of the higher level. 

There may be different paths, in the same or different 
classifications, that describe the same characteristic. 

A taxonomy is a hierarchy of terms or phrases that are taxons. 

Example: None Provided 

Multiplicity: 0 or More; up to 16 supported 

O O O 

9.2.1. source 
Description: The name of the classification system. 

This element may use any recognized "official" taxonomy, or 
any user-defined taxonomy.  An indexation or query tool may 
provide the top-level entries of a well-established classification 
(LOC, UDC, DDC, etc.). 

Maximum 1024 characters. 

Example: None Provided 

Multiplicity: 0 or 1 

O O O 

9.2.2. taxon 
Description: This sub-category describes a particular term 

O O O 

2-38 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

within a hierarchical classification system or taxonomy.  A 
taxon is a node that has a defined label or term.  A taxon may 
also have an alphanumeric designation or identifier for 
standardized reference.  Either or both the label and the entry 
may be used to designate a particular taxon. 

An ordered list of Taxons creates a taxonomic path, i.e. 
"taxonomic stairway": this is a path from a more general to 
more specific entry in a classification. 

A TaxonPath shall have a depth from 1 to 9.  Normal values 
should be defined as values between 2 and 4. 

e.g., Physics/ Acoustics/ Instruments/ Stethoscope;  

Medicine/ Diagnostics/ Instruments/ Stethoscope 

 

Example: None Provided 

Multiplicity: 0 or More; up to 16 supported 

9.2.2.1. id 
Description: The identifier of the taxon, such as a number 
or letter combination provided by the source of the 
taxonomy.  (e.g., 300) 

Maximum 128 characters. 

Example: None Provided 

Multiplicity: 0 or 1 

O O O 

9.2.2.2. entry 
Description: The textual label of the taxon.  (e.g., Social 
Sciences) 

Maximum 512 characters, bound within a langstring 
element. 

Example: None Provided 

Multiplicity: 0 or 1 

O O O 

9.3. description 
Description: This is the description of the resource relative to the 
stated 9.1:Classification.Purpose of this specific classification, 
such as discipline, idea, skill level, educational objective, etc. 

Maximum 2048 characters, bound within a langstring element. 

Example: 
<description> 
   <langstring>Content Authors will learn to use Mandatory and 
Optional data model and API</langstring> 
   </description> 
Multiplicity: 0 or 1 

O M M 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-39 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Name and Description SCORM 
Raw 

Media 

SCORM 
Content 

SCORM 
 Course 

9.4. keywords 
Description: These are the keywords and phrases descriptive of 
the resource relative to the stated 9.1:Classification.Purpose of 
this specific classification, such as accessibility, security level, 
etc., most relevant first. 

Maximum 1024 characters, bound within a langstring element. 

Example: 
<keywords> 
   <langstring>API</langstring> 
   <langstring>data model</langstring> 
   <langstring>content authoring</langstring> 
</keywords> 
Multiplicity: 0 or more; up to 8 supported 

O M M 

 

2.2.4. Stand-Alone XML Meta-Data Documents 

It is expected that each of the three categories of the SCORM meta-data (raw media, 
content and course) will take the form of stand-alone XML documents that conform to 
the IMS Learning Resource Meta-data XML Binding Specification22. 

SCORM meta-data documents are expected to be valid and well formed XML documents 
based on the Document Type Definition (DTD) referenced by the IMS Learning 
Resource Meta-data XML Binding Specification22. 

The use of XML Document Type Definitions (DTDs) as a means to ensure conformance 
is understood to be somewhat problematic in the Internet community.  DTDs fail to 
provide adequate mechanisms for extensions and do not in themselves guarantee 
interoperability.  New approaches for defining interoperable and flexible XML 
documents are emerging from organizations such as the World Wide Web Consortium 
(W3C)27.  These developments are beyond the scope of this document.  It is nonetheless 
the expectation that the XML bindings referenced in this document that today depend on 
DTDs will later be converted to comply with mainstream XML practices once they are 
defined and adopted. 

2.2.5. XML Examples 

See Section 4 for SCORM XML meta-data document examples. 

 

2-40 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

2.3. Content Structure Format (CSF) 

2.3.1. Overview 

The purpose of the Content Structure Format (CSF) is to provide the content developer 
with a means for aggregating Blocks into a cohesive unit of instruction, applying 
structure and associating learning taxonomies so that the structure and behavior can be 
uniformly represented, communicated and reproduced across LMS environments. 

The CSF can describe part of a course that can stand by itself outside the context of a 
course or an entire course.  The CSF is intended to promote reuse of entire courses and 
encourage the reuse of course components by exposing all the details of each course 
component and how a number of course components are aggregated into a whole.  The 
CSF is also intended to reduce or eliminate dependency of a course on a particular LMS 
implementation. 

The CSF Information Model described in this section is derived from the Aviation 
Industry Computer-Based Training (CBT) Committee (AICC) Computer Managed 
Instruction (CMI) specifications4.  The AICC specifications define an information model 
for course structure, properties and objectives.  This model was chosen as a starting point 
since key components of course representation have already been defined by the AICC. 

The SCORM CSF Information Model extends the AICC Course Structure Format4 
information model to include additional features, such as referencing SCORM meta-data 
documents.  The SCORM also provides an XML binding of the CSF Information Model 
in Section 2.3.6. 

2.3.2. Scope 

The CSF is a format for representing the structure and behavior of learning content that 
can be moved from one LMS to another.  It does not define LMS functionality.  It is 
assumed that an LMS may have a private, unique representation for content elements and 
structure, and that the LMS can export a CSF document, that can then be imported by 
another LMS and stored in its local format.  The CSF is not intended to place the 
requirement that LMS systems adopt the CSF model or structure internally. 

The CSF should not be confused with so called “content packaging”.  Packaging is the 
process of identifying all learning content files, regardless of type, and then physically 
bundling all of these components together with a manifest (packing slip) for movement 
from one environment to another.  The CSF is simply one of the “files” needed to 
physically move learning content from one place to another (albeit a very important one).  
Actual learning content, meta-data documents and raw media Assets must also be 
packaged with a CSF when learning content is moved from one place to another.  The 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-41 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

CSF is, therefore, a blueprint for assembling all of the constituent pieces once a content 
aggregation has arrived at its destination. 

2.3.3. IMS Content Packaging Impact on CSF 

The IMS Global Learning Consortium, Inc.3 is nearing completion of a content packaging 
specification that includes a means for representing content structure.  IMS refers to 
content structure in their document as an “organization” tree.  By removing certain 
elements in the CSF from the SCORM Version 1.0, and adding some new elements to the 
IMS specification, ADL, AICC, IEEE and IMS representatives determined that the 
SCORM CSF could be fully represented within the IMS Content Packaging 
Specification20. 

This ongoing harmonization effort is expected to result in a single industry wide 
specification.  ADL plans to add this specification to the SCORM in Version 1.2.  
Current CSF elements will then be “mapped” into the organization section of the IMS 
Content Packaging Specification20.  All current elements of the CSF are expected to be 
represented in the packaging specification. 

The availability of a content packaging specification that entirely subsumes the CSF may 
well end the need for stand-alone CSF files.  All current CSF elements are expected to 
map one-to-one to IMS organization elements and SCORM name-spaced elements.  The 
SCORM CSF, in its newly reduced form, is documented in this section to provide a clear 
bridge from today’s practice to the new IMS Content Packaging Specification20. 

2.3.4. Approach 

The CSF is intended to represent a wide variety of content structures and content 
aggregations.  Content structures can be represented by the CSF that range from very, 
very small SCOs – as simple as a few lines of Hypertext Markup Language (HTML) or a 
short media clip – to highly interactive SCOs that are tracked by an LMS.  The CSF is 
neutral about the complexity of content, the number of hierarchical levels of a particular 
course (i.e., taxonomy) and the instructional methodology employed to design a course. 

2.3.5. Content Structure Format Information Model 

This section presents the Content Structure Format Information Model in the form of a 
table.  The table consists of two columns as described in the sections below. 

2.3.5.1. Element 
This column contains a listing of the Information Model elements.  The elements are 
arranged into two groups.  The first group, called globalProperties, is the data about the 
overall learning content.  The second group, called block, defines the structure of the 

2-42 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

learning content aggregation.  The elements are numbered hierarchically by group.  An 
element may be composed of sub-elements.  The numbering scheme reflects these 
relationships. 

This column also indicates if the SCORM considers the element to be required.  Two 
values are used: mandatory or optional.  Mandatory elements are required to be present in 
a CSF and optional elements are not. 

The value type of the element is indicated.  See Section 2.3.5.3 for descriptions of the 
value types. 

Finally, the multiplicity of the element is given.  This indicates if the element exists as a 
single instance (“Single Instance”) or if the element can repeat (“Multiple Instances”). 

2.3.5.2. Description 
This column contains a description of the data element. 

2.3.5.3. Value Types 
This section describes the value types referenced in the CSF Information Model table.  
The value types describe the format of the data that an element contains. 

 

Value Type Description 
Parent Element This type is used to indicate that the element contains sub-elements and does not 

actually contain any data value. 
String255 A set of ASCII characters with a maximum length of 255. 
String4096 A set of ASCII characters with a maximum length of 4096. 
Timespan A length of time in hours, minutes and seconds shown in the following numerical 

format: HHHH:MM:SS.SS.  Hours has a minimum of 2 digits and a maximum of 4 
digits.  Minutes shall consist of exactly 2 digits.  Seconds shall contain 2 digits, 
with an optional decimal point and 1 or 2 additional digits. 

Identifier Alphanumeric group of characters with no white space or unprintable characters in 
it. Maximum of 255 characters allowed. 

Decimal A number which may have a decimal point.  If not preceded by a minus sign, the 
number is presumed to be positive. 

Vocabulary A restricted vocabulary list exists for the element.  The element data value must be 
a value from the vocabulary list.  Vocabulary words must be complete and exact 
matches to the list. 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-43 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

2.3.5.4. Content Structure Format Information Model Table 
 

Element Description 

1. content 
Requirement: 
Mandatory 
Value Type: 
Parent Element 
Multiplicity: 
Single Instance 

This element sub-structure provides a means for 
aggregating the globalProperties and block information. 

2. globalProperties 
Requirement: 
Optional 
Value Type: 
Parent Element 
Multiplicity: 
Single Instance 

This element sub-structure contains or references 
information about the learning content aggregation as a 
whole.  It also provides information describing the 
general approach used during the design of the learning 
content aggregation. 

2.1. externalMetadata 
Requirement: 
Mandatory 
(Required if globalProperties 
element is used) 
Value Type: 
Parent Element 
Multiplicity: 
Multiple Instances 

This element sub-structure is used to reference meta-
data that describes the learning content as a whole.  This 
meta-data defines, among other things, information that 
can be searched externally such as the learning content 
title, description, version, etc. 

2.1.1. source 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element describes the source or originator of the 
meta-data specification to which the learning content 
meta-data adheres. 

2.1.2. model 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element describes a specific meta-data data model 
from the source organization to which the learning 
content meta-data adheres. 

2-44 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Description 

2.1.3. location 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element describes the location where the learning 
content meta-data may be found.  This may be a URI. 

2.2. curricularTaxonomy 
Requirement: 
Optional 
Value Type: 
Parent Element 
Multiplicity: 
Single Instance 

This element sub-structure identifies the methodology of 
a particular community of users in assembling the 
learning content components in the CSF.  This sub-
structure indicates the user community and therefore 
infers the structure of the learning content aggregation, 
naming conventions (e.g., “unit”, “lesson”, “learning 
step”, etc.) and number of levels or tiers of content 
aggregation. 
See Section 2.3.5.5 for a more complete description of 
curricular taxonomy. 

2.2.1. source 
Requirement: 
Optional 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element describes the source or originator of the 
curricular taxonomy specification to which the learning 
content adheres. 

2.2.2. model 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element describes a specific curricular taxonomy 
model from the source organization to which the 
learning content adheres. 

2.2.3. location 
Requirement: 
Optional 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element describes the location where the curricular 
taxonomy specification may be found.  This may be a 
URI. 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-45 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Description 

3. block 
Requirement: 
Mandatory 
Value Type: 
Parent Element 
Multiplicity: 
Single Instance 

This element sub-structure defines all of the learning 
content elements and their organizational structure.  
This is the outermost level that may contain other 
Blocks and SCOs.  This tree structure defines a 
hierarchical lesson plan for learning content.  The 
ordering of the tree elements (Blocks and SCOs) defines 
a default sequence for the execution of each of the 
“assignments” in the learning content.  Embedded 
within this tree structure are data elements defining the 
type, source and location of each learning content 
element. 

3.1. identifier 
Requirement: 
Mandatory 
Value Type: 
Identifier 
Multiplicity: 
Single Instance 

Identifier for the Block.  Identifiers must be unique 
within the context of the CSF. 

3.2. externalMetadata 
Requirement: 
Optional 
Value Type: 
Parent Element 
Multiplicity: 
Multiple Instances 

This element sub-structure is used to reference meta-
data that describes the Block.  This meta-data defines, 
among other things, information that can be searched 
externally such as the Block title, description, version, 
etc. 

3.2.1. source 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element describes the source or originator of the 
meta-data specification to which the Block meta-data 
adheres. 

3.2.2. model 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element describes a specific meta-data data model 
from the source organization to which the Block meta-
data adheres. 

3.2.3. location 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element describes the location where the Block 
meta-data may be found.  This may be a URI. 

2-46 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Description 

3.3. identification 
Requirement: 
Mandatory 
Value Type: 
Parent Element 
Multiplicity: 
Single Instance 

This element sub-structure provides context specific 
information about the Block including title, description, 
curricular label and developer label. 
At first glance this sub-structure appears to contain the 
same kind of meta-data discussed in Section 2.2.  This is 
not exactly the case, although the contents of this 
element sub-structure could contain the same or similar 
information to that found in a stand-alone meta-data 
document.  Within the CSF, this sub-structure is meant 
to store the title and description within the context of the 
learning content aggregation.  Reusable Blocks, for 
example, might have a generic name as described in a 
separate XML meta-data document used principally to 
identify it.  Within specific learning content, however, 
the course designer may wish to rename that Block to 
something more meaningful in the context of that 
particular learning content aggregation. 

3.3.1. title 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element contains the context specific title for the 
Block.  It may be used by an LMS system for menus, 
screens, etc. 

3.3.2. description 
Requirement: 
Optional 
Value Type: 
String4096 
Multiplicity: 
Single Instance 

This element contains the context specific textual 
information about the Block.  It may contain the 
purpose, scope, or summary. 

3.3.3. labels 
Requirement: 
Optional 
Value Type:  
Parent Element 
Multiplicity:  
Single Instance 

This element sub-structure contains context specific 
labeling information used to identify the Block.  This 
sub-structure is intended to capture valuable information 
about learning content and its construction.  However, 
these elements are considered informative and are not 
expected to affect how the learning content is actually 
delivered. 

3.3.3.1. curricular 
Requirement: 
Optional 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element is intended to be used to describe the name 
of the Block according to local practices.  This element 
could be used to identify names representing levels of a 
taxonomic learning hierarchy such as “Course”, “Unit”, 
“Lesson”, “Module”, “Learning Step”, etc.   These terms 
are expected to be from a known model using a known 
vocabulary that should be defined under 
globalProperties using the curricularTaxonomy 
element. 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-47 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Description 

3.3.3.2. developer 
Requirement: 
Optional 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element may be used to store a tag or label for the 
Block useful to the developer that might be in use by 
convention within an organization or as a byproduct to 
the use of a tool.  This element  allows such information 
to be contextualized and carried along with learning 
content when it is moved. 

3.4. prerequisites 
Requirement: 
Optional 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element defines what other parts of the learning 
content must have been completed before starting the  
Block.   This allows an LMS to compute multiple paths 
through the learning content. 
See Section 2.3.5.6 for more information on 
prerequisites. 

3.4.1. type 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element defines the scripting language used to 
represent the prerequisites. 

3.5. block 
Requirement: 
Optional 
Value Type: 
Parent Element 
Multiplicity: 
Multiple Instances 

This is a sub-Block and repeats all the parts of data 
element 3. Block. 

3.6. sco 
Requirement: 
Optional 
Value Type: 
Parent Element 
Multiplicity: 
Multiple Instances 

This element sub-structure represents a Sharable 
Content Object (SCO).  A SCO is the smallest element 
of learning content to which a student may be routed by 
a LMS.  It refers to learning content launchable by the 
LMS. 

3.6.1. identifier 
Requirement: 
Mandatory 
Value Type: 
Identifier 
Multiplicity: 
Single Instance 

This element is an identifier for the SCO.  Identifiers 
must be unique within the context of the CSF. 

2-48 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Description 

3.6.2. externalMetadata 
Requirement: 
Optional 
Value Type: 
Parent Element 
Multiplicity: 
Multiple Instances 

This element sub-structure is used to reference meta-
data that describes the SCO.  This meta-data defines, 
among other things, information that can be searched 
externally such as the SCO title, description, version, 
etc. 

3.6.2.1. source 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element describes the source or originator of the 
meta-data specification to which the SCO meta-data 
adheres. 

3.6.2.2. model 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element describes a specific meta-data data model 
from the source organization to which the SCO meta-
data adheres. 

3.6.2.3. location 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element describes the location where the SCO 
meta-data may be found.  This may be a URI. 

3.6.3. identification 
Requirement: 
Mandatory 
Value Type: 
Parent Element 
Multiplicity: 
Single Instance 

This element sub-structure provides context specific 
information about the SCO including title, description, 
curricular label and developer label. 
At first glance this sub-structure appears to contain the 
same kind of meta-data discussed in Section 2.2.  This is 
not exactly the case, although the contents of this 
element sub-structure could contain the same or similar 
information to that found in a stand-alone meta-data 
document.  Within the CSF  this sub-structure is meant 
to store the title and description within the context of the 
learning content aggregation.  Reusable SCOs, for 
example, might have a generic name as described in a 
separate XML meta-data document used principally to 
identify it.  Within specific learning content, however, 
the course designer may wish to rename that SCO to 
something more meaningful in the context of that 
particular learning content aggregation. 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-49 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Description 

3.6.3.1. title 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element contains the context specific title for the 
SCO.  It may be used by an LMS system for menus, 
screens, etc. 

3.6.3.2. description 
Requirement: 
Optional 
Value Type: 
String4096 
Multiplicity: 
Single Instance 

This element contains the context specific textual 
information about the SCO.  It may contain the purpose, 
scope, or summary. 

3.6.3.3. labels 
Requirement: 
Optional 
Value Type: 
Parent Element 
Multiplicity: 
Single Instance 

This element sub-structure contains context specific 
information used to label the SCO.  This sub-structure is 
intended to capture valuable information about learning 
content and its construction.  However, these elements 
are considered informative and are not expected to affect 
how the learning content is actually delivered. 

3.6.3.3.1. curricular 
Requirement: 
Optional 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element is intended to be used to describe the name 
of the SCO according to local practices.  This element 
could be used to identify names representing levels of a 
taxonomic learning hierarchy such as “Course”, “Unit”, 
“Lesson”, “Module”, “Learning Step”, etc.   These terms 
are expected to be from a known model using a known 
vocabulary that should be defined under 
globalProperties using the curricularTaxonomy 
element. 

3.6.3.3.2. developer 
Requirement: 
Optional 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element may be used to store a tag or label for the 
SCO useful to the developer that might be in use by 
convention within an organization or as a byproduct to 
the use of a tool.  This element  allows such information 
to be contextualized and carried along with learning 
content when it is moved. 

3.6.4. prerequisites 
Requirement: 
Optional 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element defines what other parts of the learning 
content must have been completed before starting the 
SCO.  This allows an LMS to compute multiple paths 
through the learning content. 
See Section 2.3.5.6 for more information on 
prerequisites. 

2-50 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Description 

3.6.4.1. type 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element defines the scripting language used to 
represent the prerequisites. 

3.6.5. timeLimit 
Requirement: 
Optional 
Value Type: 
Parent Element 
Multiplicity: 
Single Instance 

This element sub-structure defines time values and 
actions associated with this SCO in this context. 

3.6.5.1. maxTimeAllowed 
Requirement: 
Optional 
Value Type: 
Timespan 
Multiplicity: 
Single Instance 

This element defines the amount of time a student is 
allowed to have in the current attempt of the SCO. 

3.6.5.2. timeLimitAction 
Requirement: 
Optional 
Value Type: 
Vocabulary 
Multiplicity: 
Single Instance 

This element defines the action that should be taken 
when the max time allowed in the current attempt of the 
SCO is exceeded. 
Restricted Vocabulary: 

exit,message 
exit,no message 
continue,message 
continue,no message 

3.6.6. launch 
Requirement: 
Optional 
Value Type: 
Parent Element 
Multiplicity: 
Single Instance 

This element sub-structure contains information  needed 
by an LMS to launch the SCO. 

3.6.6.1. location 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element contains the URI location of the SCO. 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-51 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Description 

3.6.6.2. parameterString 
Requirement: 
Optional 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element contains a character string to use during 
the launch of the SCO, if needed.  This is similar to 
options one might type following the name of a program 
on a command line. 

3.6.6.3. dataFromLMS 
Requirement: 
Optional 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element provides a place for initialization data 
expected by the SCO after launch.  This data is 
unconstrained and undefined.  Usage of this element is 
not yet well defined and should be used with caution. 

3.6.7. masteryScore 
Requirement: 
Optional 
Value Type: 
Decimal 
Multiplicity: 
Single Instance 

This element establishes the passing score for this SCO.  
Note that what is considered a passing score often 
depends on the context of a SCO within the learning 
content.  Some learning content may set the mastery 
score for a SCO higher than in others. 
This element assumes that the SCO has some content 
that will report score (such as a test) via the API and 
data model defined in Section 3 of this document. 

3.6.8. scoAlias 
Requirement: 
Optional 
Value Type: 
String255 
Multiplicity: 
Single Instance 
If a scoAlias is used, no other 
sco elements can be specified. 

This element contains a reference to a previously 
defined SCO to avoid the need to duplicate identical 
SCO definitions within the CSF. 

3.6.8.1. targetID 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element contains the actual reference to a 
previously defined SCO to avoid the need to duplicate 
identical SCO definitions within a CSF.  This ID must 
match the identifier (3.6.1. identifier) for a different 
SCO in the same CSF. 

2-52 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Element Description 

3.7. blockAlias 
Requirement: 
Optional 
Value Type: 
Parent Element 
Multiplicity: 
Single Instance 
If a blockAlias is used, no other 
block elements can be specified. 

This element sub structure contains a reference to a 
previously defined Block to avoid the need to duplicate 
identical Block definitions within a CSF. 

3.7.1. targeted 
Requirement: 
Mandatory 
Value Type: 
String255 
Multiplicity: 
Single Instance 

This element contains the actual reference to a 
previously defined Block to avoid the need to duplicate 
identical Block definitions within a CSF.  This ID must 
match the identifier (3.1. identifier) for a different Block 
in the same CSF. 

 

2.3.5.5. Curricular Taxonomy 
The following table illustrates how the curricularTaxonomy element might be used to 
label Blocks and SCOs within the learning content structure hierarchy to indicate a 
particular learning content design.  For each model in the table, the taxonomic label is 
shown with its corresponding CSF element in parenthesis. 

 
Model: Army Model: Air Force Model: Marine 

Corps 
Model: Canadian 
SCO 

Course 
(content) 

Course 
(content) 

Course 
(content) 

Course 
(content) 

Module 
(block) 

Block 
(block) 

Phase 
(block) 

Performance 
Objective 
(block) 

Lesson 
(block) 

Module 
(block) 

SubCourse 
(Annex) 
(block) 

Enabling 
Objective 
(block) 

Learning 
Objective 
(block) 

Lesson 
(block) 

Lesson 
(block) 

Teaching Point 
(sco) 

Learning Steps 
(sco) 

Learning Objective
(sco) 

Task 
(block) 

 

  Learning Objective
(block) 

 

  Learning Step 
(sco) 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-53 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

In these examples, the curricularTaxonomy model element helps to predict the probable 
depth of the learning content hierarchy.  For example, the Marine Corps model suggests 
seven course levels, Army and Air Force models are five levels deep and the Canadian 
model has four levels. 

Understanding the design methodology used during learning content construction and 
understanding the different approaches to learning content aggregation will assist in 
learning content reuse and will provide additional information to an LMS when learning 
content is moved. 

2.3.5.6. Sequencing Using Prerequisites 
CSF elements block and sco each have a sub-element called prerequisites.  This element 
provides a field that can be used to algorithmically represent the sequences of navigation 
through a content aggregation.  This element mirrors certain tracked data elements in the 
Run-time Environment Data Model described in Section 3.  The data model provides a 
means for learning content to report to an LMS when a particular part of the learning 
content is “complete” or “incomplete.”  An LMS can then evaluate the statements in 
prerequisites to determine what learning content the student should be delivered next.  
The prerequisites element defines what other parts of the learning content must have 
been completed before starting the block or sco.  This allows an LMS to compute 
multiple paths through the learning content. 

The statements that are evaluated in prerequisites are determined by the 
cmi.core.lesson_status data model element of a SCO (see Section 3.4.1.1 The SCORM 
Run-Time Environment Data Model).  The lesson_status value works on a per SCO 
basis.  For instance, a Block’s status is determined by the individual members contained 
within the Block.  To state that a Block’s status is complete actually means that all of the 
SCOs forming the Block are complete.  The cmi.core.lesson_status data model element 
has a restricted vocabulary with the following values: 

• passed 
• completed 
• browsed 
• failed 
• not attempted 
• incomplete 

 

The following table, which is extracted from the AICC CMI001 Guidelines for 
Interoperability4 document, defines the operators of a prerequisite scripting language 
called “aicc_script”. 

 

2-54 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
And 
& 

All elements separated by an & must be compete for the expression to be evaluated as complete. 
S34 & S36 & S38 
SCOs number S34, S36 and S38 must all be complete (“passed” or “completed”) for the group to 
be considered complete. 

 
Or 
| 

If any of the elements separated by an | are complete (“passed” or “completed”) the expression is 
considered true. 
S34=”passed” | S36=”passed” | S38=”passed” 
If any one of the SCOs, S34, S36, or S38, are passed then the group is considered complete. 

 
Not 
~ 

An operator that returns incomplete (false) if the following element or expression is complete, and 
returns complete (true) if the following element or expression is incomplete (false). 
Element Identifier: S34 
Requirement: ~S35 
The student may enter SCO S34 as long as SCO S35 has not been completed (that is, the status 
of S35 must be “incomplete”, “failed”, or “not attempted”).  If SCO S35 is complete, the student 
may not enter SCO S34. 

 
Equals 
= 

An operator that returns true when representations on both sides of the symbol have the same 
values. 
Element Identifier: S34 
Requirement: S33=”passed” 
The student may enter SCO S34 if he has passed SCO S33. 

 
Not  equals 
<> 

An operator that returns true when elements on both sides of the symbol have different values. 
Element Identifier: S34 
Requirement: S35<>”passed” 
The student may enter SCO S34 as long as he or she has not passed SCO S35.  Notice the 
difference between this expression and the example for the not operator.  The equivalent of ~S35 
is (S35<>”passed” & S35<>”completed”) 

 
Set 
{} 

A list of learning content elements (SCO or Block) separated by commas and surrounded by curly 
brackets -- {  }.  A set differs from a Block, in that the set is defined only for purposes of the 
prerequisite file.  A set has no effect on the structure of the learning content. 
{S34, S36, S37, S39} 
SCOs S34, S36, S37 and S39 are part of a set. 

 
Separator 
, 

The comma is used to separate the members of a set.  Each member of the set can be 
evaluated as a Boolean element – complete or incomplete. 
{S34, S36, S37, S39} 
SCOs S34, S36, S37 and S39 are each separated by a comma in this set. 

 
X* 

X is an integer number.  This operator means that X or more members of the set that follows 
must be complete for the expression to be complete (true). 
Element Identifier: S38 
Requirement: 3*{S34, S36, S37, S39} 
Any three or more of the following SCOs – S34, S36, S37, S39 -- must be complete (“passed” 
or “completed”) before the student can enter SCO S38. 

 
Precedence  
() 

The expression inside the parenthesis (  ) must be evaluated before combining its results with 
other parts of the logical statement. Parentheses may be nested.  (Operator precedence is 
the same as in the C programming language – including the use of parenthesis.) 
Element Identifier: S39 
Requirement: S34 & S35 | S36 
In this statement, completing S36 all by itself enables the student to enter S39. 
Element Identifier: S39 
Requirement: S34 & (S35 | S36) 
Adding the parenthesis, makes it necessary to complete (“passed” or “completed”) at least 
two units (S36 all by itself is no longer enough) to enter unit S39. 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-55 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

In this example the AICC scripting language defined above is in use.  The example 
illustrates a prerequisite where Blocks B1, B2 and SCO S1 must have been completed 
before the Block/SCO with these prerequisites may be launched by the LMS.  This 
example is based on the XML binding described in Section 2.3.6. 

<prerequisites type="aicc_script"> <![CDATA[B1&B2&S1]]> 
   <\prerequisites> 
 

 

2.3.6. Content Structure Format XML Binding 

This section describes the eXtensible Markup Language (XML) binding for the Content 
Structure Format Information Model.  There are some specific rules that have guided the 
creation of this XML binding: 

• The XML binding will adhere to the XML 1.0 specification27 of the W3C; and 

• The XML binding must maintain the definitional structure of the CSF Information 
Model. 

2.3.6.1. Narrative Description of XML Binding 
This section defines the XML format using narrative.  An XML Document Type 
Definition (DTD) that implements this abstract can be found in Section 2.3.6.2.  The 
elements of the DTD are described in each of the following subsections.  Figures 
containing diagrams showing hierarchical views of the elements described by the DTD 
are included with the descriptions of the elements.  These diagrams use a hierarchical 
notation to show parent/child relationships between elements.  The following tables 
describe the symbols within the diagrams. 

The following symbols denote the contents of the element.  Elements may contain other 
elements, or they may be “leaf nodes” and contain data. 

Symbol Meaning 

 
The <-> symbol in the lower right-hand corner of the element denotes that 
the element has one or more child elements 

 
This symbol in the upper right-hand corner of the element indicates that 
the element contains data.. 

 

The following table shows symbols that relate directly to the “Multiplicity” specified for 
each element.  This describes the number of times the element can occur within its parent 
element, or in the case of the top most element in the document, how many times the 
element occurs in the XML document. 

2-56 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Symbol Meaning 

(no symbol) When no multiplicity symbol is present, this indicates that the 
element may exist one and only one time. 

+ The plus sign indicates that the element may occur one or more 
times within its parent element. 

? This symbol indicates that the element may occur zero or one 
times within its parent element. 

* 
The asterisk indicates that the element may occur zero to many 
times within its parent element. 

 

2.3.6.1.1. <content> Elements 

Description: The top level <content> element encloses the globalProperties and block 
data.  This is a container element that serves as the root element. 

 
Figure 2.3.6.1.1a: CSF XML structure of the content element. 

 
XML Type: This element is a container element and only contains other elements. 

Multiplicity: The <content> element occurs once and only once within the CSF XML 
document. 

Attributes: None 

Sub Elements: 
• <globalProperties> 
• <block> 

Example: See Section 4 for a complete CSF XML example. 
 
 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-57 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

2.3.6.1.1.1. <globalProperties> 

Description: This element contains or references information about the learning content 
aggregation as a whole.  It also provides information describing the general approach 
used during the design of the learning content.  (See Section 2.3.6.1.2 for description of 
the <globalProperties> sub-elements.) 

XML Type: This element is a container element and only contains other elements. 

Multiplicity: The element occurs zero or once within a <content> element. 

Attributes: None 

Sub Elements: 
• <externalMetadata> 
• <curricularTaxonomy> 

Example: 
<globalProperties> 
   <externalMetadata> 
      <source>ADL</source> 
      <model>ADL SCORM 1.1</model> 
      <location><![CDATA[Course01.xml]]></location> 
   </externalMetadata> 
   <curricularTaxonomy> 
      <model>ADL Sample LMS Course Model</model> 
   </curricularTaxonomy> 
</globalProperties> 
 
 

2.3.6.1.1.2. <block> 

Description: This element defines all of the learning content components and their 
organizational structure.  This is the outermost level that may contain other Blocks and 
SCOs.  This tree structure defines a hierarchical lesson plan for learning content.  The 
ordering of the tree elements defines a default sequence for the execution of each of the 
SCOs making up the learning content aggregation.  Embedded within this hierarchical 
tree structure are data elements defining the type, source and location of each learning 
content component.  (See Section 2.3.6.1.3 for description of the <block> sub-elements.) 

XML Type: This element is a container element and only contains other elements. 

Multiplicity: The element occurs exactly once within a <content> element.  A Block 
must contain one or more other Blocks, one or more SCOs or a combination of both. 

Attributes: 

• id – This is a unique (within the CSF) identifier for the Block.  This attribute is 
required.  XML data type is ID. 

Sub Elements: 
• <externalMetadata> 
• <identification> 

2-58 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

• <prerequisites> 
• <sco> 
• <block> 
• <blockAlias> 

Example: 
<block id = "B100"> 
   <externalMetadata> 
      <source>ADL</source> 
      <model>ADL SCORM 1.1</model> 
      <location><![CDATA[Course01\Lesson01.xml]]></location> 
   </externalMetadata> 
   <identification> 
      <title>Inland Rules of the Road (HTML Format)</title> 
      <description>This lesson covers inland waterways navigation 
rules and principles.</description> 
      <labels> 
         <curricular>LESSON</curricular> 
         <developer>9934u939-2393938</developer> 
      </labels> 
   </identification> 
   <sco id = "S100001"> 
      <externalMetadata> 
         <source>ADL</source> 
         <model>ADL SCORM 1.1</model> 
         <location><![CDATA[Course01\Lesson01\sco01.xml]]></location> 
      </externalMetadata> 
      <identification> 
         <title>References and Lesson Objective</title> 
            <description>This SCO serves as a title page, citing 
references and listing the lesson objective.</description> 
         <labels> 
            <curricular>SCO</curricular> 
            <developer>940994-0983938</developer> 
         </labels> 
      </identification> 
      <launch> 
         <location><![CDATA[Course01\Lesson01\sco01.htm]]></location> 
      </launch> 
   </sco> 
</block> 
 
 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-59 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

2.3.6.1.2. <globalProperties> Elements 

 

 
Figure 2.3.6.1.2a: CSF XML structure of the globalProperties element. 

 

2.3.6.1.2.1. <externalMetadata> 

Description: This element is used to reference meta-data that describes the learning 
content as a whole.  This meta-data defines, among other things, information that can be 
searched externally such as the learning content title, description, version, etc. 

XML Type: This element is a container element and only contains other elements.  (See 
Section 2.3.6.1.5 for description of the <externalMetadata> sub-elements.) 

Multiplicity: The element occurs one or more times within a <globalProperties> 
element. 

Attributes: None 

Sub Elements: 
• <source> 
• <model> 
• <location> 

Example: 
<externalMetadata> 
   <source>ADL</source> 
   <model>ADL SCORM 1.1</model> 
   <location><![CDATA[Course01.xml]]></location> 
</externalMetadata> 
 
 

2-60 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

2.3.6.1.2.2. <curricularTaxonomy> 

Description: This element sub-structure identifies the methodology of a particular 
community of users in assembling the learning content components in the CSF.  This 
sub-structure indicates the user community and therefore infers the structure of the 
learning content, naming conventions (e.g., “unit”, “lesson”, “learning step”, etc.) and 
number of levels or tiers of content aggregation. 

See Section 2.3.5.5 for a more complete description of curricular taxonomy. 

XML Type: This element is a container element and only contains other elements. 

Multiplicity: The element occurs zero or one time within a <globalProperties> element. 

Attributes: None 

Sub Elements: 
• <source> 
• <model> 
• <location> 

Example: 
<curricularTaxonomy> 
   <model>ADL Sample LMS Course Model</model> 
</curricularTaxonomy> 
 
 

2.3.6.1.2.2.1. <source> 

Description: This element describes the source or originator of the curricular taxonomy 
specification to which the learning content adheres. 

XML Type: PCDATA 

Data Format: The data is required to be of value type String255.  See Section 2.3.5.3 for 
a description of this type. 

Multiplicity: The element occurs zero or one time within a <curricularTaxonomy> 
element. 

Attributes: None 

Sub Elements: None 

Example: 
<source>ADL</source> 
 
 

2.3.6.1.2.2.2. <model> 

Description: This element describes a specific curricular taxonomy model from the 
source organization to which the learning content adheres. 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-61 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

XML Type: PCDATA 

Data Format: The data is required to be of value type String255.  See Section 2.3.5.3 for 
a description of this type. 

Multiplicity: The element occurs exactly once within a <curricularTaxonomy> element. 

Attributes: None 

Sub Elements: None 

Example: 
<model>ADL Course Taxonomy 1.0</model> 
 
 

2.3.6.1.2.2.3. <location> 

Description: This element describes the location where the curricular taxonomy 
specification may be found.  This may be a URI. 

XML Type: PCDATA 

Data Format: The data is required to be of value type String255.  See Section 2.3.5.3 for 
a description of this type.  It is recommended that this element be encoded as  CDATA. 

Multiplicity: The element occurs zero or one time within a <curricularTaxonomy> 
element. 

Attributes: None 

Sub Elements: None 

Example: 
<location> 
   <![CDATA[www.domain.org\docs\standards\coursetaxonomy.doc]]> 
</location> 
 
 

2-62 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

2.3.6.1.3. <block> Elements 

 

 
Figure 2.3.6.1.3a: CSF XML structure of the block element. 

 

2.3.6.1.3.1. <externalMetadata> 

Description: This element is used to reference meta-data that describes the Block.  This 
meta-data defines, among other things, information that can be searched externally such 
as the Block title, description, version, etc. 

XML Type: This element is a container element and only contains other elements.  (See 
Section 2.3.6.1.5 for description of the <externalMetadata> sub-elements.) 

Multiplicity: The element occurs zero or more times within a <block> element. 

Attributes: None 

Sub Elements: 
• <source> 
• <model> 
• <location> 

Example: 
<externalMetadata> 
   <source>ADL</source> 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-63 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

   <model>ADL SCORM 1.1</model> 
   <location><![CDATA[Block01.xml]]></location> 
</externalMetadata> 
 
 

2.3.6.1.3.2. <identification> 

Description: This element provides context specific information about the Block 
including title, description, curricular label and developer label. 

XML Type: This element is a container element and only contains other elements.  (See 
Section 2.3.6.1.6 for description of the <identification> sub-elements.) 

Multiplicity: The element occurs exactly once within a <block> element. 

Attributes: None 

Sub Elements: 
• <title> 
• <description> 
• <labels> 

Example: 
<identification> 
   <title>International Rules of the Road</title> 
   <description>This lesson covers international waterways navigation 
rules and principles.</description> 
   <labels> 
      <curricular>LESSON</curricular> 
      <developer>8d8c9d8c99-s8d888</developer> 
   </labels> 
</identification> 
 
 

2.3.6.1.3.3. <prerequisites> 

Description: This element defines what other parts of the learning content aggregation 
must have been completed before starting the Block.  This allows an LMS to compute 
multiple paths through the learning content. 

See Section 2.3.5.6 for more information on prerequisites. 

XML Type: PCDATA 

Data Format: The data is required to be of value type String255.  See Section 2.3.5.3 for 
a description of this type.  It is required that the data be encoded as CDATA to preserve 
all of the characters within a sequencing expression. 

Multiplicity: The element occurs zero or once within a <block> element. 

2-64 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Attributes: 

• type – specifies the script language that is used to represent the prerequisites.  At 
this time, the only recognized script language is the AICC scripting language 
indicated by a type value of “aicc_script”.  This attribute is required. 

Sub Elements: None 

Example: 
<prerequisites type="aicc_script"> 
   <![CDATA[B1&B2&A1]]> 
<\prerequisites> 
 
 

2.3.6.1.3.4. <sco> 

Description: This element represents a Sharable Content Object (SCO).  A SCO is the 
smallest element of learning content to which a student may be routed by a LMS.  It 
refers to learning content launched by the LMS.  (See Section 2.3.6.1.4 for description of 
the <sco> sub-elements.) 

XML Type: This element is a container element and only contains other elements. 

Multiplicity: The element occurs zero or more times within a <block> element. 

Attributes: 
• id – This is a unique (within the CSF) identifier for the SCO.  This attribute is 

required.  XML data type is ID. 

Sub Elements: 
• <externalMetadata> 
• <identification> 
• <prerequisites> 
• <timelimit> 
• <launch> 
• <masteryScore> 
• <aualias> 

Example: 
<sco id = "S100001"> 
   <externalMetadata> 
      <source>ADL</source> 
      <model>ADL SCORM 1.1</model> 
      <location><![CDATA[Course01\Lesson01\au01.xml]]></location> 
   </externalMetadata> 
   <identification> 
      <title>References and Lesson Objective</title> 
      <description>This SCO serves as a title page, citing references 
and listing the lesson objective.</description> 
      <labels> 
         <curricular>SCO</curricular> 
         <developer>940994-0983938</developer> 
      </labels> 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-65 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

   </identification> 
   <launch> 
      <location><![CDATA[Course01\Lesson01\au01.htm]]></location> 
   </launch> 
</sco> 
 
 

2.3.6.1.3.5. <blockAlias> 

Description: This element contains a reference to a previously defined Block to avoid 
the need to duplicate identical Block definitions within a CSF. 

XML Type: EMPTY 

Multiplicity: The element occurs zero or one time within a <block> element.  If the 
<block> element contains the <blockAlias> element, then no other Block sub-elements 
can be specified. 

Attributes: 

• targetID – This is the identifier for the Block that this Block aliases.  This 
attribute is required.  XML data type is IDREF. 

Sub Elements: None 

Example: 
<block id = "B4004”> 
   <blockAlias targetID = “B0001”/> 
</block> 
 
 

2-66 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

2.3.6.1.4. <sco> Elements 

 

 
Figure 2.3.6.1.4a: CSF XML structure of the sco element. 

 

2.3.6.1.4.1. <externalMetadata> 

Description: This element is used to reference meta-data that describes the SCO.  This 
meta-data defines, among other things, information that can be searched externally such 
as the SCO title, description, version, etc. 

XML Type: This element is a container element and only contains other elements.  (See 
Section 2.3.6.1.5 for description of the <externalMetadata> sub-elements.) 

Multiplicity: The element occurs zero or more times within a <sco> element. 

Attributes: None 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-67 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Sub Elements: 
• <source> 
• <model> 
• <location> 

Example: 
<externalMetadata> 
   <source>ADL</source> 
   <model>ADL SCORM 1.1</model> 
   <location><![CDATA[sco01.xml]]></location> 
</externalMetadata> 
 
 

2.3.6.1.4.2. <identification> 

Description: This element provides context-specific information about the SCO 
including title, description, curricular label and developer label. 

XML Type: This element is a container element and only contains other elements.  (See 
Section 2.3.6.1.6 for description of the <identification> sub-elements.) 

Multiplicity: The element occurs exactly once within a <sco> element. 

Attributes: None 

Sub Elements: 
• <title> 
• <description> 
• <labels> 

Example: 
<identification> 
   <title>International Rules of the Road</title> 
   <description>This lesson covers international waterways navigation 
rules and principles.</description> 
   <labels> 
      <curricular>LESSON</curricular> 
      <developer>8d8c9d8c99-s8d888</developer> 
   </labels>  
</identification> 
 
 

2.3.6.1.4.3. <prerequisites> 

Description: This element defines what other parts of the learning content aggregation 
must have been completed before starting the SCO.   This allows an LMS to compute 
multiple paths through the learning content. 

See Section 2.3.5.6 for more information on prerequisites. 

XML Type: PCDATA 

2-68 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Data Format: The data is required to be of value type String255.  See Section 2.3.5.3 for 
a description of this type.  It is required that the data be encoded as CDATA to preserve 
all of the characters within a sequencing expression. 

Multiplicity: The element occurs zero or one time within a <sco> element. 

Attributes: 
• type – specifies the script language that is used to represent the prerequisites.  At 

this time, the only recognized script language is the AICC scripting language 
indicated by a type value of “aicc_script”.  This attribute is required. 

Sub Elements: None 

Example: 
<prerequisites type="aicc_script"> 
   <![CDATA[B1&B2&A1]]> 
<\prerequisites> 
 
 

2.3.6.1.4.4. <timeLimit> 

Description: This element sub-structure defines time values and actions associated with 
this SCO in this context. 

XML Type: This element is a container element and only contains other elements. 

Multiplicity: The element occurs zero or one time within a <sco> element. 

Attributes: None 

Sub Elements: 
• <maxTimeAllowed> 
• <timeLimitAction> 

Example: 
<timeLimit> 
   <maxTimeAllowed>00:20:00</maxTimeAllowed> 
   <timeLimitAction>continue,no message</timeLimitAction> 
</timeLimit> 
 
 

2.3.6.1.4.4.1. <maxTimeAllowed> 

Description: This element defines the amount of time a student is allowed to have in the 
current attempt of the SCO. 

XML Type: PCDATA 

Data Format: The data is required to be of value type Timespan.  See Section 2.3.5.3 for 
a description of this type. 

Multiplicity: The element occurs zero or one time within a <timeLimit> element. 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-69 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Attributes: None 

Sub Elements: None 

Example: 
<maxTimeAllowed>00:20:00</maxTimeAllowed> 
 
 

2.3.6.1.4.4.2. <timeLimitAction> 

Description: This element defines the action that should be taken when the max time 
allowed in the current attempt of the SCO is exceeded. 

Restricted Vocabulary: 
exit,message 
exit,no message 
continue,message 
continue,no message 

XML Type: PCDATA 

Data Format: The data is required to be of value of the restricted vocabulary.  See 
Section 2.3.5.3 for a description of this type. 

Multiplicity: The element occurs zero or one time within a <timeLimitAction> element. 

Attributes: None 

Sub Elements: None 

Example: 
<timeLimitAction>continue,no message</timeLimitAction> 
 
 

2.3.6.1.4.5. <launch> 

Description: This element sub-structure contains information needed by an LMS to 
launch the SCO. 

XML Type: This element is a container element and only contains other elements. 

Multiplicity: The element occurs zero or one time within a <sco> element. 

Attributes: None 

Sub Elements: 
• <location> 
• <parameterString> 
• <dataFromLMS> 

2-70 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Example: 
<launch> 
   <location><![CDATA[Course01\Lesson02\sco04.htm]]></location> 
</launch> 
 
 

2.3.6.1.4.5.1. <location> 

Description: This element contains the URI location of the SCO. 

XML Type: PCDATA 

Data Format: The data is required to be of value type String255.  See Section 2.3.5.3 for 
a description of this type.  It is recommended that the data be encoded as CDATA. 

Multiplicity: The element occurs exactly once within a <launch> element. 

Attributes: None 

Sub Elements: None 

Example: 
<location><![CDATA[Course01\Lesson02\sco07.htm]]></location> 
 
 

2.3.6.1.4.5.2. <parameterString> 

Description: This element contains a character string to use during the launch of the 
SCO if needed.  This is similar to options one might type following the name of a 
program on a command line. 

XML Type: PCDATA 

Data Format: The data is required to be of value type String255.  See Section 2.3.5.3 for 
a description of this type.  It is recommended that the data be encoded as CDATA. 

Multiplicity: The element occurs zero or one time within a <launch> element. 

Attributes: None 

Sub Elements: None 

Example: 
<parameterString><![CDATA[parameter1, parameter2]]></parameterString> 
 
 

2.3.6.1.4.5.3. <dataFromLMS> 

Description: This element provides a place for initialization data expected by the SCO 
after launch.  This data is unconstrained and undefined.  Usage of this element is not yet 
well defined and should be used with caution. 

XML Type: PCDATA 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-71 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Data Format: The data is required to be of value type String4096.  See Section 2.3.5.3 
for a description of this type.  It is recommended that the data be encoded as CDATA. 

Multiplicity: The element occurs zero or one time within a <launch> element. 

Attributes: None 

Sub Elements: None 

Example: 
<dataFromLMS> 
   <![CDATA[some data that the SCO needs to get from the LMS]]> 
</dataFromLMS> 
 
 

2.3.6.1.4.6. <masteryScore> 

Description: This element establishes the passing score for this SCO.  Note that what is 
considered a passing score often depends on the context of a SCO within the learning 
content aggregation.  Some learning content aggregations may opt to set the mastery 
score for a SCO higher than in others. 

This element assumes that the SCO has some content that will report score (such as a 
test) over the Run-time Environment communication API and data model defined in 
Section 3 of this document. 

XML Type: PCDATA 

Data Format: The data is required to be of value type Decimal.  See Section 2.3.5.3 for a 
description of this type. 

Multiplicity: The element occurs zero or one time within a <sco> element. 

Attributes: None 

Sub Elements: None 

Example: 
<masteryScore>90.5</masteryScore> 

 
 

2.3.6.1.4.7. <scoAlias> 

Description: This element contains a reference to a previously defined SCO to avoid the 
need to duplicate identical SCO definitions within a CSF. 

XML Type: EMPTY 

Multiplicity: The element occurs zero or one time within a <sco> element.  If the <sco> 
element contains the <scoAlias> element, then no other SCO sub-elements can be 
specified. 

2-72 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Attributes: 

• targetID – This is the identifier for the SCO that this SCO aliases.  This attribute 
is required.  XML data type is IDREF. 

Sub Elements: None 

Example: 
<sco id = "S4004”> 
   <scoAlias targetID = “S0001”/> 
</sco> 
 
 

2.3.6.1.5. <externalMetadata> Elements 

2.3.6.1.5.1. <source> 

Description: This element describes the source or originator of the meta-data 
specification to which the meta-data adheres. 

XML Type: PCDATA 

Data Format: The data is required to be of value type String255.  See Section 2.3.5.3 for 
a description of this type. 

Multiplicity: The element occurs exactly one time within an <externalMetadata> 
element. 

Attributes: None 

Sub Elements: None 

Example: 
<source>ADL</source> 
 
 

2.3.6.1.5.2. <model> 

Description: This element describes a specific meta-data data model from the source 
organization to which the meta-data adheres. 

XML Type: PCDATA 

Data Format: The data is required to be of value type String255.  See Section 2.3.5.3 for 
a description of this type. 

Multiplicity: The element occurs exactly one time within an <externalMetadata> 
element. 

Attributes: None 

Sub Elements: None 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-73 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Example: 
<model>ADL SCORM 1.1</model> 
 
 

2.3.6.1.5.3. <location> 

Description: This element describes the location where the meta-data may be found.  
This may be a URI. 

XML Type: PCDATA 

Data Format: The data is required to be of value type String255.  See Section 2.3.5.3 for 
a description of this type.  It is recommended that this element be encoded as CDATA. 

Multiplicity: The element occurs exactly one time within an <externalMetadata> 
element. 

Attributes: None 

Sub Elements: None 

Example: 
<location><![CDATA[Course01\Lesson02\sco07.xml]]></location> 
 
 

2.3.6.1.6. <identification> Elements 

2.3.6.1.6.1. <title> 

Description: This element contains the context specific title for the Block or SCO.  It 
may be used by an LMS system for menus, screens, etc. 

XML Type: PCDATA 

Data Format: The data is required to be of value type String255.  See Section 2.3.5.3 for 
a description of this type. 

Multiplicity: The element occurs exactly one time within an <identification> element. 

Attributes: None 

Sub Elements: None 

Example: 
<title>ADL Herding Kittens Lesson</title>  
 
 

2.3.6.1.6.2. <description> 

Description: This element contains the context specific textual information about the 
Block or SCO.  It may contain the purpose, scope, summary, etc. 

XML Type: PCDATA 

2-74 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Data Format: The data is required to be of value type String4096.  See Section 2.3.5.3 
for a description of this type. 

Multiplicity: The element occurs zero or one time within an <identification> element. 

Attributes: None 

Sub Elements: None 

Example: 
<description>This lesson presents an approach that can be used to 
herd kittens….</description> 
 
 

2.3.6.1.6.3. <labels> 

Description: This element contains context specific information used to label the Block 
or SCO.  This sub-structure is intended to capture valuable information about learning 
content and its construction.  However, these elements are considered informative and are 
not expected to affect how the learning content is actually delivered. 

XML Type: This element is a container element and only contains other elements. 

Multiplicity: The element occurs zero or one time within an <identification> element. 

Attributes: None 

Sub Elements: 
• <curricular> 
• <developer> 

Example: 
<labels> 
   <curricular>EXAM</curricular> 
   <developer>8c9d8d8d-c9d9c8</developer> 
</labels> 
 
 

2.3.6.1.6.3.1. <curricular> 

Description: This element is intended to be used to describe the name of the Block or 
SCO according to local practices.  This element could be used to identify names 
representing levels of a taxonomic learning hierarchy such as “Course”, “Unit”, 
“Lesson”, “Module”, “Learning Step”, etc.  These terms are expected to be from a known 
model using a known vocabulary that should be referenced under <globalProperties> 
element using the <curricularTaxonomy> element. 

XML Type: PCDATA 

Data Format: The data is required to be of value type String255.  See Section 2.3.5.3 for 
a description of this type. 

Multiplicity: The element occurs zero or one time within a <labels> element. 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-75 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Attributes: None 

Sub Elements: None 

Example: 
<curricular>Lesson</curricular> 
 
 

2.3.6.1.6.3.2. <developer> 

Description: This element may be used to store a tag or label for the Block or SCO 
useful to the developer, following a convention within an organization or as a byproduct 
to the use of a tool.  This element allows such information to be contextualized and 
carried along with learning content when it is moved. 

XML Type: PCDATA 

Data Format: The data is required to be of value type String255.  See Section 2.3.5.3 for 
a description of this type. 

Multiplicity: The element occurs zero or one time within a <labels> element. 

Attributes: None 

Sub Elements: None 

Example: 
<developer>88-123</developer> 
 
 

2.3.6.2. Content Structure Format DTD 
<?xml version='1.0' encoding='UTF-8' ?> 
<!-- scormcsf(1.1).dtd --> 
 
<!ELEMENT content (globalProperties? , block)> 
 
<!--*** globalProperties: Properties of the content as whole--> 
<!ELEMENT globalProperties (externalMetadata+ , curricularTaxonomy?)> 
 
<!--*** block: A grouping of related structural elements. 
  Blocks contain Sharable Content Objects or other Blocks. 
  Blocks always contain other content elements. 
  This holds a unique (to this content) ID identifier  
  for a particular Block. 
  (other elements may refer to this unique ID)--> 
<!ELEMENT block ((externalMetadata* , identification , prerequisites? 
, (sco | block)+) | blockAlias)> 
<!ATTLIST block  id ID  #REQUIRED > 
 
<!--*** externalMetadata: The value of this element refers or points  
  to the location of the metadata document describing this  
  content.--> 
<!ELEMENT externalMetadata (source , model , location)> 
 
<!--*** curricularTaxonomy: Organizational methodology used to  
  construct the content.--> 

2-76 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

<!ELEMENT curricularTaxonomy (source? , model , location?)> 
 
<!--*** identification: Identifies content context-specific  
  information--> 
<!ELEMENT identification (title , description? , labels?)> 
 
<!--*** prerequisites: Expression indicating what a student  
  must accomplish before beginning this content element. 
  Content elements that a student must complete before 
  beginning a Block or Sharable Content Object. It uses a 
  script that defines the logical rules to be applied. 
  The script type must be defined. 
  e.g., <prerequisites type="aicc_script">  
    <![CDATA[B1&B2&S1]]>  
   </prerequisites> --> 
<!ELEMENT prerequisites (#PCDATA)> 
<!ATTLIST prerequisites  type CDATA  #IMPLIED > 
 
<!--*** sco: A SCO is the smallest element of instruction or testing 
  to which a student may be routed by a LMS. It refers to  
  "content" launched by the LMS system. 
  This holds an unique (to this content) ID identifier. 

  (other elements may refer to this unique ID)--> 
<!ELEMENT sco ((externalMetadata* , identification , prerequisites? , 
timeLimit? , launch? , masteryScore?) | scoAlias)> 
<!ATTLIST sco  id ID  #REQUIRED > 
 
<!--*** blockAlias: Reference to a previously defined Block (permits 
  one Block to be used more than once within a content  
  structure)--> 
<!ELEMENT blockAlias EMPTY> 
<!ATTLIST blockAlias  targetID IDREF  #IMPLIED > 
 
<!--*** source: Describes the source or originator of a given  
  practice or specification to which this content adheres.   
  e.g., "ADL CSF", or "AICC CMI", or "IEEE LOM" --> 
<!ELEMENT source (#PCDATA)> 
 
<!--*** model: Name of a specific data model used by this content 
  e.g., "cmi", or "ARMY314", or "IMS v1.0"--> 
<!ELEMENT model (#PCDATA)> 
 
<!--*** location: URI Location--> 
<!ELEMENT location (#PCDATA)> 
 
<!--*** title: Context specific title.  May be used by an LMS system  
  in menus, screens, etc.--> 
<!ELEMENT title (#PCDATA)> 
 
<!--*** description: Context specific textual information about the  
  content element.  It may contain the purpose, scope, or 
  summary.  (Defined by content author)--> 
<!ELEMENT description (#PCDATA)> 
 
<!--*** labels: Context specific local label (e.g., unit, chapter,  
  learning step)--> 
<!ELEMENT labels (curricular? , developer?)> 
 
<!--*** Time values or actions associated with this SCO in this  
  context--> 
<!ELEMENT timeLimit (maxTimeAllowed? , timeLimitAction?)> 
 
<!--***launch: Information needed by an LMS to launch a SCO--> 
<!ELEMENT launch (location , parameterString? , dataFromLMS?)> 

Sharable Content Object Reference Model (SCORM) Version 1.1 2-77 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
<!--*** masteryScore: Values to be used in this content context for 
  tracking score within a SCO--> 
<!ELEMENT masteryScore (#PCDATA)> 
 
<!--*** scoAlias: Reference to a previously defined SCO (permits one  
  SCO to be used more than once within the content--> 
<!ELEMENT scoAlias EMPTY> 
<!ATTLIST scoAlias  targetID IDREF  #IMPLIED > 
 
<!--*** curricular label: Local name of the content element 
  e.g., "UNIT", "MODULE", "LEARNING STEP"--> 
<!ELEMENT curricular (#PCDATA)> 
 
<!--*** developer label: an organization-specific identifier 
  (e.g., D509)--> 
<!ELEMENT developer (#PCDATA)> 
 
<!--*** maxTimeAllowed: The amount of time the student is allowed 
  to have in the current attempt on the SCO.--> 
<!ELEMENT maxTimeAllowed (#PCDATA)> 
 
<!--*** timeLimitAction: What the SCO is to do when the max time  
  allowed is exceeded. AICC examples: "exit,no message",  
  "continue,no message", "exit,message","continue,message".--> 
<!ELEMENT timeLimitAction (#PCDATA)> 
 
<!--*** parameterString: String of characters needed to successfully  
  launch a SCO--> 
<!ELEMENT parameterString (#PCDATA)> 
 
<!--*** dataFromLMS: unconstrained (undefined) initialization data  
  expected by the SCO when it is launched by the LMS.--> 
<!ELEMENT dataFromLMS (#PCDATA)> 
 

2.3.6.3. XML Examples 
See Section 4 for SCORM Content Structure Format XML examples. 

 

 
 

2-78 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 

3. SECTION III (Page Number Style) 
SECTION  3    

The SCORM Run-Time Environment 
 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 

3-2 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

3.1. Run-Time Environment Overview 

A goal of the SCORM is that learning content be reusable and interoperable across 
multiple Learning Management Systems (LMS).  For this to be possible, there must be a 
common way to start learning content, a common mechanism for learning content to 
communicate with an LMS, and a predefined language or vocabulary forming the basis of 
the communication.  As illustrated in figure 3.1a, these three aspects of the Run-time 
Environment are Launch, Application Program Interface (API) and Data Model. 

 

Learning Management System (LMS)

Server Side

Client Side

Data Model
Actual data sent 
back and forth 
between SCO 
and LMS

API (Communications
Link between SCO 
and LMS)

Launch
(Starts SCO)

JavaScriptJavaScript

Browser

SCO

API 
Adapter

API 
Adapter

LMS
Server
LMS

Server

Figure 3.1a: Launch, API and Data Model as they apply to the SCORM Run-Time Environment. 
 

The Launch mechanism defines a common way for LMSs to start Web-based learning 
content.  This mechanism defines the procedures and responsibilities for the 
establishment of communication between the delivered content and the LMS.  The 
communication protocols are standardized through the use of a common API. 

The API is the communication mechanism for informing the LMS of the state of the 
content (e.g., initialized, finished or in an error condition), and is used for getting and 
setting data between the LMS and the learning content (e.g., score, time limits, etc.). 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-3 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

A Data Model is a standard list of data elements used to define the information being 
communicated, such as, the status of the learning content.  In its simplest form, the data 
model defines elements that both the LMS and learning content are expected to “know” 
about.  The LMS must maintain the state of required data elements across sessions, and 
the learning content must utilize only these predefined data elements if reuse across 
multiple systems is to occur. 

 

3-4 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

3.2. Launch 

A common launch scheme enables consistency of learning content delivery behavior 
across LMSs without specifying the underlying LMS implementation.  Note that in this 
context the term “LMS” is used to describe systems that include the function of managing 
delivery of learning content.  This launch scheme addresses delivery of Web-enabled 
learning content in the form of Sharable Content Objects (SCOs) within the context of a 
learning session. 

It is the responsibility of the LMS to manage the sequencing and navigation between 
SCOs, based on the Content Structure Format (CSF) hierarchy of Blocks and SCOs 
defining the structure of the course.  The SCORM launch model requires that an LMS 
only launch one SCO at a time and that only one SCO is active at a time.  The launch 
model also requires that only LMSs may launch SCOs.  SCOs may not launch other 
SCOs. 

LMSs may adaptively determine sequencing based on the fulfillment of defined 
prerequisites of a Block or SCO.  The progression through SCOs that comprise a 
particular learning session may be sequential, non-sequential, user-directed, or adaptive, 
depending on the capabilities of the LMS.  At this time the SCORM does not address the 
standardization of sequencing and navigation between SCOs.  This also means that there 
is no guideline in place for the look and feel of visual components related to sequencing.  
This will be addressed in a future version of the SCORM. 

As described in Section 2.3, the CSF contains a hierarchical representation of Blocks and 
SCOs, along with the prerequisites for each Block or SCO.  Each SCO, referenced in the 
CSF, has a defined launch location that defines the URL of the SCO. 

It is the responsibility of the LMS (or delivery component/service thereof), based on 
some event, to determine which Sharable Content Object is to be launched. The LMS 
may launch the next SCO in the CSF sequence, launch a user selected SCO, or determine 
which SCO to launch based on student performance in an adaptive fashion.   Upon 
determining the appropriate SCO to launch, the LMS uses the URL defined by the SCO’s 
launch location (from the CSF) to navigate to, or replace the currently displayed SCO 
with the content found at the launch location. 

The LMS may implement the launch in any manner desired and further, may delegate the 
actual launch responsibility to the client or server  portion of the LMS as needed.  The 
actual launch must be accomplished using the HTTP protocol.   Ultimately, the SCO 
identified by the launch location in the CSF is launched and delivered to the client 
browser. 

For example, the LMS may render a menu that allows user directed navigation through a 
course.  The menu may appear as a series of hyperlinks whose targets contain the 
corresponding launch locations of the SCOs that appear in the menu. 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-5 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Alternatively, the LMS may contain, or make use of  a server-side delivery mechanism 
that adaptively determines the sequence in which SCOs are launched based on learner 
performance.  In this case, the server-side component responsible for delivery would 
directly or indirectly serve the appropriate SCO based on the CSF specified launch 
location for the appropriate SCO. 

The LMS must launch the SCO in a browser window that is a child window or a child 
frame of the LMS window that exposes the API Adapter as a Document Object Model 
(DOM)27 Object.  The API Adapter must be provided by the LMS. 

It is the responsibility of the SCO to recursively search the parent and/or opener window 
hierarchy until the API Adapter is found.  Once the API Adapter has been found the SCO 
may initiate communication with the LMS. 

 

3-6 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

3.3. Application Program Interface (API) 

3.3.1. API Overview 

The SCORM is based directly on the Run-time Environment functionality defined in 
AICC’s CMI001 Guidelines for Interoperability4 document.  ADL collaborated with 
AICC members and participants to develop a common Launch and API specification and 
to adopt Web-based data elements. The following sections provide an overview of the 
key elements of the AICC API specification as they relate to the SCORM. 

3.3.2. Description of the SCO to LMS Communication API 

The use of a common API fulfills many of the SCORM’s high level requirements for 
interoperability and reuse.  It provides a standardized way for learning content to 
communicate with LMSs, yet it shields the particular communication implementation 
from the content developer.  In its simplest terms, an API is merely a set of predefined 
functions that the SCO can rely on being available.  An API hides implementation details 
from SCOs and thus promotes reuse and interoperability.  An API Adapter is a piece of 
functional software that implements and exposes the functions of the API.  How the 
insides of an API Adapter are implemented should not matter to content developers 
provided they use the same public interface.  The LMS need only provide an API Adapter 
that implements the functionality of the API and exposes its interface to the client SCO. 

A key aspect of the API is that it is a communication mechanism which allows the SCO 
to communicate with the LMS.  It is assumed that once the SCO is launched it can then 
“get” and “set” information with an LMS.  All communication between the API Adapter 
and the SCO  is initiated by the SCO.  There is currently no supported mechanism for 
LMSs to initiate calls to functions implemented by a SCO.  The functions of the API 
Adaptor object are threefold: 

• Execution State 
Two of the API functions, LMSInitialize(“”) and LMSFinish(“”), handle 
execution state. 

• State Management 
The API has three functions that are used to handle errors.  These three API 
functions are: LMSGetLastError(), LMSGetErrorString(errornumber) and 
LMSGetDiagnostic(parameter). 

• Data Transfer 
The remaining three API functions are used to transfer data to and from an 
LMS: LMSGetValue(data model element), LMSSetValue(data model element, 
value) and LMSCommit("").  Note that the API is designed to get and set data 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-7 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

values that are separately defined by an external data model.  The AICC 
specification defines one such data model, called “cmi”. Other data models 
could be developed and used with this API as well. 

The following table defines the API in detail. 

Execution State 
LMSInitialize Description: This function indicates to the API Adapter that the SCO is going 

to communicate with the LMS.  It allows the LMS to handle LMS specific 
initialization issues.  It is a requirement of the SCO that it call this function 
before calling any other API functions. 
 
Syntax: LMSInitialize(parameter) 
 
Parameter: ""  An empty string must be passed for conformance to this 
standard.  Values other than "" are reserved for future extensions. 
 
Return Value: String representing a boolean. 

• "true" result indicates that the LMSInitialize("") was successful  
• "false" result indicates that the LMSInitialize("") was unsuccessful 
If a return value of "false" is returned, then this signifies to the SCO that 
the LMS is in an unknown state and that any additional API calls will 
not be processed by the LMS. 

 
Example:  
var result = LMSInitialize("") 
if (result == "false") 
{ 
   // Do some error handling 
} 
else 
{ 
   // continue with the execution of the SCO 
} 
 

The SCO tells the API Adapter that the content wants to establish 
communication with the LMS.  A typical return value is "true". 

LMSFinish Description: The SCO must call this function before it terminates, if it 
successfully called LMSInitialize at any previous point.  This call signifies two 
things: 

1. The SCO can be assured that any data set using LMSSetValue() calls 
has been persisted by the LMS. 

2. The SCO has finished communicating with the LMS.   
 
Syntax: LMSFinish(parameter) 
 
Parameter: ""  An empty string must be passed for conformance to this 
standard.  Values other than "" are reserved for future extensions. 
 
Return Value: String representing a boolean. 

• "true" result indicates that the LMSFinish("") was successful 
• "false" result indicates that the LMSFinish("") was unsuccessful 

 
If a return value of "true" is returned, then the SCO may no longer call any other 
API functions. 
If a return value of "false" is returned, then this signifies to the SCO that the 

3-8 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

LMS is in an unknown state and that any additional API calls may or may not be  
processed by the LMS. 
 
Examples: 
var result = LMSFinish(""); 

Data Transfer 
LMSGetValue Description: This function allows the SCO to obtain information from the 

LMS.  It is used to determine: 
• Values for various categories (groups) and elements in the data model   
• The version of the data model supported 
• Whether a specific category or element is supported 
• The number of items currently in an array or list of elements 

The complete data element name and/or keywords are provided as a parameter.  
The current value of the requested data model parameter is returned.  Only one 
value -- always a string -- is returned for each call. 
 
Syntax: LMSGetValue(parameter) 
 
Parameter:  
datamodel.group.element  

Returns the value of the named element 
datamodel._version 

The _version keyword is used to determine the version of the data 
model supported by the LMS. 

datamodel.element._count 
The _count keyword is used to determine the number of elements 
currently in an array.    The count is the total number of elements in the 
array, not the index number of the last position in the array. 

datamodel.element._children 
The _children keyword is used to determine all of the elements in a 
group or category that are supported by the LMS. 

 
Return Value: All return values are strings. 
LMSGetValue(datamodel.group.element)  

the return value is a string representing the current value of the 
requested element or group. 

LMSGetValue(datamodel._version)  
the return value is a string representing the version of the data model 
supported by the LMS. 

LMSGetValue(datamodel.group._children)  
the return value is a comma separated list of all of the element names in 
the specified group or category that are supported by the LMS.  If an 
element has no children, but is supported, an empty string ("") is 
returned.  An empty string ("") is also returned if an element is not 
supported.  A subsequent request for last error [LMSGetLastError()] 
can determine if the element is not supported.  The error “401 Not 
implemented error” indicates the element is not supported. 

LMSGetValue(datamodel.group._count)  
the return value is an integer that indicates the number of items 
currently in an element list or array. 

 
Examples: 
var value = LMSGetValue("cmi.core.student_name") 

A typical return value might be "Jackson Hyde". 
 

var value = LMSGetValue("cmi.core.lesson_status") 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-9 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

A typical return value might be "incomplete". 
 

var value = LMSGetValue(“cmi._version”) 
The current draft standard for the IEEE document defining the CMI data 
model is entitled Draft Standard for Computer Managed Instruction, and 
has an ID of P1484.11.2 and a version number of 3.4.  This call returns 
the version number of that IEEE document which is 3.4. 
 

var value = LMSGetValue("cmi.student_preferences._children") 
This is a request for category support information.  One typical return 
value would be, "audio,speed,text".  If there is an empty string (“”) 
returned, student_preferences are not supported.  An additional API call 
to determine the last error could verify this. 
 

LMSSetValue Description: This function allows the SCO to send information to the LMS.  
The API Adapter may be designed to immediately forward the information to the 
LMS, or it may be designed to forward information based on some other 
approach.   
This function is used to set the current values for various categories (groups) and 
elements in the data model. 
The data element name and its group are provided as a parameter.  The newly 
desired value of the data element is included as the second parameter in the call.  
Only one value is sent with each call. 
 
Syntax: LMSSetValue(parameter, value) 
 
Parameter: This is the name of a fully qualified element defined in the data 
model.  The argument is case sensitive.  The argument is a string enclosed in 
quotes. 
The following represents some forms this parameter may take. 
datamodel.element 

This is the name of a category or group defined in the Data Model. An 
example is "cmi.comments". 

datamodel.group.element 
This is the name of an element defined in the Data Model. An example is  
"cmi.core.lesson_status". 

datamodel.group.n.element 
The value of the sub-element in the nth-1 member of the element array 
(zero-based indexing is used). 

Value: This is a string which must be convertible to the data type defined in this 
standard for the data model element identified in the first parameter. 
 
Return Value: String representing a boolean 

• "true" result indicates that the LMSSetValue() was successful  
• "false" result indicates that the LMSSetValue() was unsuccessful 

Examples: 
var result = LMSSetValue("cmi.core.score.raw","95"); 
 

Sets the cmi.core.score.raw to a value of "95" 
A subsequent call to LMSGetValue(“cmi.core.score.raw”) must return 
“95” 

LMSCommit Description: If the API Adapter is caching values received from the SCO via 
an LMSSetValue(), this call requires that any values not yet persisted by the 
LMS be persisted. 
In some implementations, the API Adapter may persist set values as soon as they 
are received, and not cache them on the client.  In such implementations, this 

3-10 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

API call is redundant and would result in no additional action from the API 
Adapter.  This call ensures to the SCO that the data sent, via an LMSSetValue() 
call, will be persisted by the LMS upon completion of the LMSCommit(). 
 
Syntax: LMSCommit(parameter) 
 
Parameter: "".  An empty string must be passed for conformance to this 
standard.  Values other than "" are reserved for future extensions. 
 
Return Value: String representing a boolean 

• "true" result indicates that the LMSCommit("") was successful  
• "false" result indicates that the LMSCommit("") was unsuccessful 
If a return value of "false" is returned, then this signifies to the SCO that 
the LMS is in an unknown state and that any additional API calls may 
or may not be  processed by the LMS. 

 
Examples: 
var result = LMSCommit(""); 
 

Requires that any cached values, previously set via SCO calls to 
LMSSetValue(), that have not been persisted by the LMS be persisted. 

State Management 
LMSGetLastError Description: The SCO must have a way of assessing whether or not any given 

API call was successful, and if it was not successful, what went wrong.  This 
function returns an error status code resulting from the previous API call.  Each 
time an API function is called (with the exception of this one, 
LMSGetErrorString, and LMSGetDiagnostic -- the error functions), the error 
code is reset.  The SCO may call the error functions any number of times to 
retrieve the error code, and the code cannot change until the next API call is 
made. 
 
Syntax: LMSGetLastError() 
 
Parameter: None 
 
Return Value: 
The return values are Strings that can be converted to integer numbers that 
identify errors falling into the following categories: 

100’s General errors 
200’s Syntax errors 
300’s LMS errors 
400’s Data model errors 

The following codes are available for error messages: 
0 No error 
 
101 General exception 
102 Server is busy. 
 
201 Invalid argument error 
202 Element cannot have children 
203 Element not an array – cannot have count 
 
301 Not initialized 
 
401 Not implemented error 
402 Invalid set value, element is a  keyword 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-11 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

403 Element is read only 
404 Element is write only 
405 Incorrect Data Type 
 

Additional codes TBD 
 
Examples: 
var errorCode = LMSGetLastError(); 

 
LMSGetErrorString Description: This function enables the content to obtain a textual description 

of the error represented by the error code number. 
 
Syntax: LMSGetErrorString(errornumber) 
 
Parameter: An integer number representing an error code. 
 
Return Value: A string that represents the verbal description of an error. 
 
Examples: 
var errorString = LMSGetErrorString("403"); 
 
errorString should contain "Element is read only" 

LMSGetDiagnostic Description: This function enables vendor-specific error descriptions to be 
developed and accessed by the content.  These would normally provide 
additional detail regarding the error. 
 
Syntax: LMSGetDiagnostic(parameter) 
 
Parameter: The parameter may take one of two forms.   

• An integer number representing an error code.  This requests additional 
information on the listed error code. 

• “”.  An empty string.  This requests additional information on the last 
error that occurred. 

 
Return Value: The return value is a string that represents any vendor-desired 
additional information relating to either the requested error or the last error. 
 
Examples:  
var moreInfo = LMSGetDiagnostic("403"); 
 
moreInfo could contain more vendor specific information on the “Element is 
read only” error 

 

3.3.3. API Error Code Usage 

The SCO must have a way of assessing whether or not any given API function call was 
successful, and if it was not successful, what went wrong.  The LMSGetLastError() 
function returns an error code that can be used to determine the type of error raised by the 
previous API function call. 

Syntax: LMSGetLastError() 

Parameters: None 

3-12 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Return Type: String – values can be converted into integer numbers that are identified in 
the following table. 

 
Code Description Usage 

“0” No error No errors encountered. Successful API call. 
 
“101” General Exception Used to indicate general exceptions. 
 

Invalid argument error To be used when there is a call to a data 
model element that does not exist. 

“201” 

Ex. LMSGetValue(“cmi.core.zip_code”) 
“cmi.core.zip_code” is not a valid CMI Data Model element. 
Element can not have children To be used when LMSGetValue() is called on 

any data model category or element that does 
not support _children. 

“202” 

Ex. LMSGetValue(“cmi.student_id._children”) 
Element not an array.  Cannot have count. To be used when an LMSGetValue() is called 

on any data model category or element that 
does not support _count. 

“203” 

Ex. LMSGetValue(“cmi.core._count”) 
 
“301” Not initialized To be used when there is a call to any API 

function call before LMSInitialize(“”) is 
called. 

 
Not implemented error To be used when a call is made to a Data 

Model element that is not supported by the 
LMS. 

“401” 

Ex. LMSGetValue(“cmi.objectives.0.id”) 
The “cmi.objectives.0.id” element is an optional element.  If the LMS does not support this 
element then the LMS should return an empty string (“”) and set the error code to 401. 
Invalid set value, element is a keyword To be used when an LMSSetValue() call is 

invoked on a keyword. 
“402” 

Ex. LMSSetValue(“cmi.core._children”,”student_id,student_name) 
“cmi.core._children” is a keyword. 
Element is read only. To be used when an LMSSetValue() call is 

invoked on an element that is read only. 
“403” 

Ex. LMSSetValue(“cmi.core.student_id”,”JoeStudent”) 
“cmi.core.student_id” is a read only CMI element 
Element is write only To be used when an LMSGetValue() call is 

invoked on an element that is write only 
“404” 

Ex. LMSGetValue(“cmi.core.exit”) 
“cmi.core.exit” is a write only CMI element 
Incorrect Data Type To be used when an attempt is made to set an 

element with the incorrect data type. 
“405” 

Ex. LMSSetValue(“cmi.core.score.raw”,”eighty five”) 
“eighty five” is not the correct data type for the “cmi.core.score.raw”.  The correct data type 
needs to be a CMIDecimal (“85”) or a CMIBlank (“”). 
Ex. LMSSetValue(“cmi.core.lesson_status”,”Not Attempted”)   
“Not Attempted” is not a valid vocabulary member of the cmi.core.lesson_status element.  
Vocabularies are case sensitive and must match identically. 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-13 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

3.3.4. API General Rules 

The following list summarizes general usage rules for the API: 

• The function names are all case sensitive, and must always be expressed exactly 
as shown. 

• The function parameters or arguments are case sensitive.  All parameters are 
lower case. 

• Each call to an API function, other than the error handling functions, resets the 
error code. 

3.3.5. LMS Responsibility 

3.3.5.1. API Adapter 
The SCORM requires that an LMS supply an API Adapter that implements the required 
API functionality described in the previous section.  This adapter must shield SCOs from 
the particular adapter implementation details so that the SCOs need not have any 
knowledge of the underlying communication infrastructure, and instead rely solely on the 
existence of a standardized LMS Application Program Interface.  The requirements for 
using the API Adapter are as follows: 

• The LMS must launch the SCO in a browser window that is a child window or a 
child frame of the LMS window that contains the API Adapter. 

• The API Adapter must be provided by the LMS. 

• The only supported mechanism for API interaction from SCOs is through 
ECMAScript (JavaScript) calls. 

• The API Adapter must be accessible via the DOM27 as an object named “API”.   

As an example, an API Adapter might be implemented as a Java applet that may have a 
signature like this: 

public class API extends Applet  
{ 
 
  public String LMSInitialize( String parameter ) 
  { . . .} 
  public String LMSGetValue( String element ) 
  { . . } 
  public String LMSSetValue( String element, String value ) 
  {. . .} 
  public String LMSCommit( String parameter ) 
  {. . .} 
  public String LMSFinish( String parameter ) 
  {. . .} 
  public String LMSGetLastError() 
  {. . .} 

3-14 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

  public String LMSGetErrorString( String errorCode ) 
  {. . .} 
  public String LMSGetDiagnostic( String errorCode ) 
  {. . .} 
} 
 

Note that an API Adapter can be implemented in other programming languages such as 
C++ and loaded, for example, as a browser plug-in.  The API Adapter implementation is 
expected to be LMS specific; the above code fragment is only an example approach.  
There are many ways to implement an LMS API Adapter. 

The following figures (3.3.5.1a through 3.3.5.1d) illustrate several different possible 
implementation approaches.  However, all implementations are still responsible for 
exposing the API via ECMAScript. 

 

Java Servlets or 
Java Server Pages 

(JSPs)

LMS Client

API Adapter
Implemented as a 

Java Applet

Sharable 
Content 
Object 
(SCO)

Web Browser

LMS Server(s)

Web Server

Data
Persistence

API

LMS 
Client/Server

Protocol 
Implemented as

HTTP

SCO Launch
Protocol
must be
HTTP

 

Active Server 
Pages (ASP)

LMS Client

API Adapter
Implemented in 

JavaScript

Sharable 
Content 
Object 
(SCO)

Web Browser

LMS Server(s)

Web Server

Data
Persistence

API

LMS 
Client/Server

Protocol 
Implemented as

HTTP

SCO Launch
Protocol
must be
HTTP

COM

 
Figure 3.3.5.1a: Learning Management System 
implementing the API Adapter as a Java Applet 
and using Java Servlets or Java Server Pages on 

the server side. 

Figure 3.3.5.1b: Learning Management System 
implementing the API Adapter as using JavaScript 

and using Active Server Pages and COM 
technology on the server side. 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-15 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

LMS Client

API Adapter
Implemented as a 

Java Applet

Sharable 
Content 
Object 
(SCO)

Web Browser

LMS Server(s)

Web Server

Data
Persistence

API

LMS 
Client/Server

Protocol 
Implemented as

IIOP

SCO Launch
Protocol
must be
HTTP

Object Request 
Broker

C++ or Java

 

CGI 
Programs 
or Scripts

LMS Client

API Adapter
Implemented in 

JavaScript

Browser
Plug-in

Web Browser

LMS Server(s)

Web Server

Data
Persistence

API

LMS 
Client/Server

Protocol 
Implemented as

HTTP

SCO Launch
Protocol
must be
HTTP

SCO

 
Figure 3.3.5.1c: Learning Management System 
implementing the API Adapter as a Java Applet 

and using Object Request Broker (ORB) 
technology with C++ and Java components the 

server side . 

Figure 3.3.5.1d: Learning Management System 
implementing the API Adapter using JavaScript 

and using CGI programs and scripts on the server 
side. 

 

3.3.6. SCO Responsibility 

3.3.6.1. Find API 
It is the responsibility of the SCO to, at a minimum, issue LMSInitialize(“”) and 
LMSFinish(“”) API calls.  In order to do this, the content must be able to locate the API 
Adapter that is presented by the LMS.  It is the responsibility of the LMS to place an API 
Adapter in the DOM window hierarchy so that the SCO can recursively search the parent 
and/or opener window hierarchy to find the API.  It is the responsibility of the content to 
find and establish communication with the LMS’s API Adapter.  How the SCO chooses 
to do this is not mandated by the SCORM. 

The following code example represents an algorithm that the SCO could use to locate the 
LMS’s API Adapter.  The use of these functions is not a requirement imposed by the 
SCORM and the SCO may use other approaches to locate the LMS’s API Adapter. 

<SCRIPT LANGUAGE=JAVASCRIPT > 
var findAPITries = 0; 
 
function findAPI(win) 
{ 
   // Check to see if the window (win) contains the API 
   // if the window (win) does not contain the API and 
   // the window (win) has a parent window and the parent window   
   // is not the same as the window (win) 
   while ( (win.API == null) &&  

3-16 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

           (win.parent != null) &&  
           (win.parent != win) ) 
   {  
      // increment the number of findAPITries 
      findAPITries++; 
 
      // Note: 7 is an arbitrary number, but should be more than sufficient 
      if (findAPITries > 7)  
      { 
         alert("Error finding API -- too deeply nested."); 
         return null; 
      } 
       
      // set the variable that represents the window being  
      // being searched to be the parent of the current window 
      // then search for the API again 
      win = win.parent; 
   } 
   return win.API; 
} 
 
function getAPI() 
{ 
   // start by looking for the API in the current window 
   var theAPI = findAPI(window); 
 
   // if the API is null (could not be found in the current window) 
   // and the current window has an opener window 
   if ( (theAPI == null) &&  
        (window.opener != null) &&  
        (typeof(window.opener) != "undefined") ) 
   { 
      // try to find the API in the current window’s opener 
      theAPI = findAPI(window.opener); 
   } 
   // if the API has not been found 
   if (theAPI == null) 
   { 
      // Alert the user that the API Adapter could not be found 
      alert("Unable to find an API adapter"); 
   } 
   return theAPI; 
} 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-17 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 
 

3-18 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

3.4. Data Model 

3.4.1. Data Model Overview 

The purpose of establishing a common data model is to make sure that a defined set of 
information about SCOs can be tracked by different LMS environments.  If, for example, 
it is determined that tracking a student’s score is a general requirement, then it is 
necessary to establish a common way for content to report scores to LMS environments.  
If SCOs use their own unique scoring representations, learning management systems may 
not know how to receive, store or process the information. 

There are a number of data models under development in various communities and 
standards organizations.  These draft data model specifications attempt to functionally 
group information sets to be exchanged between SCOs and LMS environments.  
Examples include: student profile information, question and test interactions, state 
information, assessment, etc.  As of the release of this version of the SCORM, these draft 
data model sets are still under development and have not been widely implemented or 
tested. 

3.4.1.1. The SCORM Run-Time Environment Data Model 
The data model in this section is defined as the SCORM Run-time Environment Data 
Model derived directly from the AICC CMI Data Model described in the AICC CMI 
Guidelines for Interoperability4.  The AICC CMI Data Model was chosen for inclusion in 
the SCORM since it is well defined and has been implemented in the past.  It is expected 
that in the future new data model sets will be adopted and incorporated into the SCORM.  
It is assumed that the data model elements defined in this version of the SCORM will 
map to new data model sets when defined and adopted.  A mapping from the current data 
model to new elements should provide a relatively smooth migration path to future data 
models. 

To identify the data model in use, all of the names of the elements described in this 
section start with “cmi”.  This signals implementers that these elements are part of the 
AICC CMI Data Model.  Alternative data models, as developed, will start with a different 
designation (e.g., adl.elementName instead of cmi.elementName). 

During the test and evaluation phase of the SCORM, members of the AICC and IEEE 
decided to substantially reduce the number of elements in the AICC CMI Data Model.  
This was done both to ease the transition to new data models under development, and 
because many of the elements removed had not actually been implemented by most 
implementers.  A list of elements removed from the AICC CMI Data Model that 
appeared in the SCORM Version 1.0 are summarized in Appendix C.  The SCORM Run-
time Environment Data Model contained herein matches the reduced AICC CMI Data 
Model set. 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-19 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

3.4.1.2. The SCORM Run-Time Environment Data Model General Rules 

The following list summarizes general usage rules for the data model: 

• The first symbol in the data element name identifies the data model.  For example, 
"cmi" indicates the AICC CMI Data Model.  This expands the functionality of the 
API by allowing the same API to be used with other data models; 

• There are three reserved keywords. These are all lower case and proceeded by an 
underscore. 
• _version: keyword used to determine the version of the data model supported 

by the LMS. 
• _children: keyword used to determine which data model elements are 

supported by the LMS. 
• _count: keyword used to determine the number of elements currently in a list; 

• All arrays are 0 based arrays.  Items should be placed in the arrays in a sequential 
manner; 

• The data model names are case sensitive; and 
• The data model is implemented on a SCO by SCO basis.  One SCO cannot access 

another SCO’s data elements. 

3.4.2. Data Model Elements 

The data model elements are broken up into two categories: mandatory and optional.  The 
AICC CMI001 Guidelines for Interoperability4 document specifies which elements 
require mandatory implementation by an LMS, and which are optional. 

All mandatory data model elements must be supported by the LMS.  LMS environments 
may implement support for all or some of the optional data model elements. 

All data elements are optional for use by SCOs.  SCOs are required only to use the API 
functions LMSInitialize("") and LMSFinish(""); they are not required to use 
LMSSetValue() or LMSGetValue().  SCOs may be very, very small and not be designed 
to be tracked in detail.  But if they are to be tracked, they must conform to a common 
data model for reusability across multiple LMS environments. 

3.4.3. Handling Lists 

There are several data elements that appear in a list or an array.  An example of this 
would be objectives.  There may be more than one objective covered in the content, and a 
student may be allowed to experience an objective more than once. 

To get or set values in a list, the index number is used.  The only time an index number 
may be omitted is when there is only one member in a list.  Index numbering starts at 0.  
If a value is to be appended to the list, the SCO must know the last index number used.  

3-20 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

All new array elements shall be added sequentially.  The SCO shall not skip array 
numbers or leave empty array elements when constructing a list of array values.  The 
_count keyword can be used to determine the current number of records in the list.  For 
instance, to determine the number of objective records currently stored, the following 
API call would be used: 

var numOfObjectives = LMSGetValue("cmi.objective._count"); 
 

If the SCO does not know the count of the objective records, it can begin the current 
student count with 0.  This would overwrite any information about objectives currently 
stored in the first index position.  Overwriting or appending is a decision that is made by 
the SCO author when he creates the SCO. 

Elements in a list are referred to with a dot-number notation (represented by .n).  For 
instance the value of the status element in the first objective in a SCO would be referred 
to as "cmi.objective.0.status".  The status element in the fourth objective would be 
referred to as "cmi.objective.3.status". 

3.4.4. The SCORM Run-Time Environment Data Model 

cmi.core 
Information required to be furnished by all LMS systems.  What all SCOs may depend upon at start up.  
 
Children of cmi.core: 
 
student_id, student_name, lesson_location, credit, lesson_status, entry, score, total_time, lesson_mode, exit, 
session_time 
    
cmi.core._children 
 
Supported API calls: 
   LMSGetValue() 
 
LMS Mandatory: Yes 
 
Data Type: CMIString255 
 
SCO Accessibility: 
   Read Only 
 
 

 
Definition: The _children keyword is used to determine all of the elements in the core 
category that are supported by the LMS.  If an element has no children, but is 
supported, an empty string is returned.  If an element is not supported, an empty string 
is returned.  A subsequent request for last error can verify that the element is not 
supported. 
 
Usage: To determine which cmi.core data elements are supported by the LMS. 
 
Format: The return value is a comma separated list of all of the element names in the 
core category that are supported by the LMS.   
 
LMS Behavior:  
    Initialization: The set of supported children for this group. So that on an 
LMSGetValue() request, the appropriate list of supported children is returned. 
 
    LMSGetValue(): LMS returns a comma separated list of supported elements 
    Example API call: LMSGetValue("cmi.core._children") 
    Example Return Values:          
         “student_id,student_name,lesson_location,credit,lesson_status,entry, 
              score,total_time, exit,session_time” 
    Error Code: 401 - Not implemented error.  If the cmi.core._children element is not 

supported an empty string is returned and an error code is set to 
indicate that the element is not supported.  

                       NOTE: The cmi.core._children element must be supported by  LMS 
since the element is mandatory 

     
    LMSSetValue() : LMS should set an error code according to the following:  
    Error Code: 402 - Invalid set value, element is a keyword.   If the element is 

supported (element must be supported by LMS since the element 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-21 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

is mandatory) and a request attempts to invoke an LMSSetValue() 
on this element, then the LMS should set the error code to 402.      

                       401 - Not implemented error.   If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported.                         

                      NOTE element must be supported by  LMS since the element is 
mandatory 

 
SCO Usage Example: 
SCOs can use the cmi.core._children request to determine if a certain element is 
implemented by the LMS: 
 
   var coreChildren =  LMSGetValue(“cmi.core._children”); 
 if (coreChildren.indexOf(“student_name”) != -1) 
 { 
      studentName = LMSGetValue(“cmi.core.student_name”); 
 } 
 
 

cmi.core.student_id 
 
Supported API calls: 
   LMSGetValue() 
 
LMS Mandatory: Yes 
 
Data Type: CMIIdentifier 
 
SCO Accessibility: 
   Read Only 
 
 

 
Definition: Unique alpha-numeric code / identifier that refers to a single user of the 
LMS system. 
 
Usage: Used to uniquely identify a student. 
 
Format: Up to 255 alpha-numeric characters with no spaces. Dashes (or hyphen) and 
the underscore are legal.  Periods are illegal. Case insensitive. 
 
LMS Behavior:  
    Initialization: LMS is responsible, based on student registration. 
    
    LMSGetValue(): Returns the current value stored by the LMS for the student. 
    Example Return Values:          
         “Joe_Student1” 
         “JS-2000” 
         ”joe2000-3” 
    Error Code: 401 - Not implemented error.  If this element is not supported an 

empty string is returned and an error code is set to indicate that 
the element is not supported.  

                      NOTE element must be supported by  LMS since the element is 
mandatory 

 
    LMSSetValue() : LMS should set an error code according to the following: 
    Error Code: 403 Element is read only.   If the element is supported (element must 

be supported by LMS since the element is mandatory) and a 
request attempts to invoke an LMSSetValue() on this element, 
then the LMS should set the error code to 403. 

                        401 - Not implemented error If this element is not supported an 
errorcode is set to 401 by the LMS to indicate that the element is 
not supported. 

                        NOTE element must be supported by  LMS since the element is 
mandatory 

 
SCO Usage Example: 
The SCO might want to display the student ID when it is launched: 
 
   var coreStudentID =  LMSGetValue(“cmi.core.student_id”); 
 

cmi.core.student_name 
 
Supported API calls: 
   LMSGetValue() 
 
LMS Mandatory: Yes 
 
Data Type: CMIString255 
 
SCO Accessibility: 

 
Definition: Normally, the official name used for the student on the course roster. A 
complete name, not just a first name.  
 
Usage: Used to represent the students official name. 
 
Format: Last name, first name and middle initial.  Last name and first name are 
separated by a comma. Spaces in the name must by honored. 
 

3-22 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

   Read Only 
 
 
 

LMS Behavior:  
    Initialization: LMS is responsible, based on student registration. 
     
    LMSGetValue(): Returns the current value stored by the LMS 
    Example Return Values:          
         "Student, Joseph A."  
         "Student, Mike A. Jr." 
    Error Code: 401 - Not implemented error.  If this element is not supported an 

empty string is returned and an error code is set to indicate that 
the element is not supported.  

                      NOTE element must be supported by  LMS since the element is 
mandatory 

     
    LMSSetValue() : LMS should set an error code according to the following: 
    Error Code: 403 - Element is read only.   If the element is supported (element must 

be supported by LMS since the element is mandatory) and a 
request attempts to invoke an LMSSetValue() on this element, 
then the LMS should set the error code to 403. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

                      NOTE element must be supported by  LMS since the element is 
mandatory 

 
SCO Usage Example: 
The SCO might want to display the student name on launch of the SCO: 
 
   var coreStudentName =  LMSGetValue(“cmi.core.student_name”); 
 

cmi.core.lesson_location  
 
Supported API calls: 
   LMSGetValue() 
   LMSSetValue() 
 
LMS Mandatory: Yes 
 
Data Type: CMIString255 
 
SCO Accessibility: 
   Read / Write 
 
 

 
Definition: This corresponds to the SCO exit point passed to the LMS system the last 
time the student experienced the SCO.  This provides one mechanism to let the 
student return to a SCO at the same place he left it earlier.  In other words, this 
element can identify the student's exit point and that exit point can be used by the SCO 
as an entry point the next time the student runs the SCO. 
 
Usage: This element defines where the student last was inside the SCO.  The element 
could be used by the SCO to store off a "bookmark" during the session.  If the SCO is 
suspended, and then is re-entered later, the lesson_location could be used by the SCO 
to send the student back into the SCO where they left off.  
 
Format: Implementation dependent.  The LMS system simply holds this data and then 
returns it to the SCO when the student is re-entering it, if the SCO asks for it.  
Whatever the SCO passes back to the LMS system is returned.  The format matches 
whatever the SCO expects -- the format is created by the SCO. The first time a student 
enters the SCO, or if there is no preferred starting point, lesson_location may equal an 
empty string (""). 
 
LMS Behavior:  
    Initialization: LMS should set this to be an empty string.  A SCO may optionally set 
                        this value and then retrieve the data on re-entry into the SCO. 
 
    LMSGetValue(): Returns the current value stored by the LMS      
    Error Code: 401 - Not implemented error.  If this element is not supported an 

empty string is returned and an error code is set to indicate that 
the element is not supported.  

                        NOTE element must be supported by  LMS since the element is 
mandatory 

     
    LMSSetValue() : Sets the data model element to the supplied value.  Value must 

match the data type for this element. 
    Error Code: 405 – Incorrect Data Type.   If the element is supported (element must 

be supported by LMS since the element is mandatory) and a 
request attempts to invoke an LMSSetValue() with a value that is 
not of the correct data type. 

                        401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-23 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

                        NOTE element must be supported by  LMS since the element is 
mandatory 

                         
    Example Return/Set Values: SCO implementation dependent 
 
SCO Usage Example: 
The SCO can use the lesson_location as a "bookmark" 

- On launch of the SCO, the SCO may position the student where the student left 
off in the SCO during the previous attempt at the SCO. 

- On exit of the SCO, the SCO may set the position so that the next time the 
student enters the SCO the position can be retrieved. 

 
// Example SCO that is written using JavaScript and HTML with anchors 
 
// This function could exist in a function call onLoad() that gets invoked when the HTML 
// page is loaded 
 
  var coreSCOLocation =  LMSGetValue(“cmi.core.lesson_location”); 
 if (LMSGetLastError() == “0”) 
 { 
    // coreSCOLocation contains an anchor name defined in the  
    // HTML page 
 
    // Start the SCO off where the student left off 
    window.location.hash = coreSCOLocation; 
 } 
 else 
 { 
    // Error processing   
 } 
  

cmi.core.credit 
 
Supported API calls: 
   LMSGetValue() 
 
LMS Mandatory: Yes 
 
Data Type: CMIVocabulary 

(Credit) 
"credit" 
"no credit" 
 
SCO Accessibility: 
   Read Only 
 
 

 
Definition: Indicates whether the student is being credited by the LMS system based 
on performance (pass/fail and score) in this SCO. 
 
Usage: Used by the LMS system to indicate whether or not the student is taking the 
SCO for credit. 
 
cmi.core.credit is used in conjunction with lesson_mode.  See cmi.core.lesson_mode 
for more detail.  Cmi.core.credit is also used in the determination of lesson_status.  
See cmi.core.lesson_status for more detail. 
 
Format: A set vocabulary phrase.  Two possible vocabulary values: 

• “credit”.  This means that the student is taking the SCO for credit.  The LMS 
system is telling the SCO that if the SCO sends data to the LMS system, the 
LMS system will credit it to the student.  

• “no credit”.  This means that the student is taking the SCO for no credit.  
His current credit, if any (for instance a score of 80 and status of passed) will 
not be changed by his performance in this SCO.  The LMS system is telling 
the SCO that if the SCO sends data to the LMS system it will not change the 
student’s accreditation. 

 
LMS Behavior: 
   Initialization: LMS is responsible for determining whether or not the student is taking 

the course for credit or no credit. 
   
   LMSGetValue(): Returns the current value stored by the LMS 
   Example Return Values:  
       "no credit" 
       "credit" 
   Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the 
element is not supported.  

                      NOTE element must be supported by LMS since the element is 
mandatory 

 
   LMSSetValue():LMS should set an error code according to the following: 
   Error Code: 403 - Element is read only. If the element is supported (element must 

be supported by LMS since the element is mandatory) and a 

3-24 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

request attempts to invoke an LMSSetValue() on this element, 
then the LMS should set the error code to 403. 

                      401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

                      NOTE element must be supported by  LMS since the element is 
mandatory 

 
SCO Usage Example: 
The SCO might use the value returned from the LMS to determine what is displayed in 
the browser.  There may be different content in the SCO that is displayed if the course 
is being taken for credit versus no credit. 
 
var creditFlag = LMSGetValue("cmi.core.credit") 
if (creditFlag == "credit") 
{ 
    // Student is taking course for credit handle appropriately 
} 
else 
{ 
   // Student is taking course for no credit, handle 
appropriately 
} 

cmi.core.lesson_status 
 
Supported API calls: 
   LMSGetValue() 
   LMSSetValue() 
 
LMS Mandatory: Yes 
 
Data Type: CMIVocabulary 

(Status) 
passed 
completed   
failed    
incomplete 
browsed   
not attempted 
 
SCO Accessibility: 
   Read / Write 
 
 

 
Definition: This is the current student status as determined by the LMS system.  Six 
status values are possible.   
 
Usage:  
Normally the SCO determines its own status and passes it to the LMS.  

1) If there is a mastery score in the CSF, the LMS can change the status to either 
passed or failed depending on the student's score compared to the mastery 
score.  

2) If there is no mastery score in the CSF, the LMS cannot override SCO 
determined status. 

3) If the student is taking the SCO for no credit, there is no change to the 
lesson_status, with one exception.  If the lesson_mode is "browse", the 
lesson_status may change to "browsed" even if the cmi.core.credit is set to no 
credit. 

 
On re-entry into the SCO, the LMS may change the status to either passed, failed, or 
browsed.  Passed or failed based on criteria (defined in the CSF) for mastery of the 
SCO.  browsed, if the SCO was launched on its initial attempt with a lesson_mode of 
“browse”. 
 
Format: A set vocabulary phrase.  Six possible vocabulary values: 

• passed: Necessary number of objectives in the SCO were mastered, or the 
necessary score was achieved.  Student is considered to have completed the 
SCO and passed. 

• completed: The SCO may or may not be passed, but all the elements in the 
SCO were experienced by the student.  The student is considered to have 
completed the SCO.  For instance, passing may depend on a certain score 
known to the LMS system.  The SCO knows the raw score but not whether 
that raw score was high enough to pass. 

• failed: The SCO was not passed.  All the SCO elements may or may not 
have been completed by the student.  The student is considered to have 
completed the SCO and failed. 

• incomplete: The SCO was begun but not finished. 
• browsed: The student launched the SCO with a LMS mode of Browse on the 

initial attempt. 
• not attempted: Incomplete implies that the student made an attempt to 

perform the SCO, but for some reason was unable to finish it.  Not attempted 
means that the student did not even begin the SCO.  Maybe he just read the 
table of contents, or SCO abstract and decided he was not ready.  Any 
algorithm within the SCO may be used to determine when the SCO moves 
from "not attempted" to "incomplete". 

 
LMS Behavior:  
    Initialization: If it is the student's first attempt at the SCO the lesson_status is set to 

not attempted.  The LMS is responsible for setting the initial value to 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-25 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

"not attempted". 
 
    LMSGetValue(): Returns  the value stored in the data model.  The return must be 

one of the set vocabularies for the status. 
    Error Code: 401 - Not Implemented Error.  If this element is not supported an 

empty string is returned and an error code is set to indicate that 
the element is not supported.  

                        NOTE element must be supported by  LMS since the element is 
mandatory 

     
    LMSSetValue() : Sets the data model element to the supplied value.  Value must 

match the data type for this element. 
    Error Code: 405 – Incorrect Data Type: If the element is supported (element must 

be supported by LMS since the element is mandatory) and a 
request attempts to invoke an LMSSetValue() with a value that is 
not of the correct data type. 

                        401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

                       NOTE element must be supported by LMS since the element is 
mandatory  

 
 
    Example Return/Set Values:  
       "completed" 
       "failed" 
       "browsed" 
 
SCO Usage: 
   passed – used when SCO is taken for credit 
   failed – used when SCO is taken for credit 
   completed – used when SCO is taken for no credit 
   incomplete – used when SCO is taken for no credit or credit, used when SCO is 

exited prematurely (before a passed/failed/completed status could be 
determined) 

   browsed –  used when the lesson_mode is browse 
   not attempted – SCO should never set lesson_status to not attempted (This is 

initialized by the LMS when the student first attempts the SCO) 
 
 
SCO Usage Example: 
   var lessonStatus =  LMSGetValue(“cmi.core.lesson_status”); 
 if (lessonStatus == “failed”) 
 { 
      // Student failed the SCO, handle appropriately 
 } 
 else 
 { 
     // Student did not fail the SCO, handle appropriately 
 } 
 

cmi.core.entry 
 
Supported API calls 

LMSGetValue() 
 
LMS Mandatory: Yes 
 
Data Type: CMIVocabulary 

(Entry) 
"ab-initio" 
"resume" 
"" - empty string 
 
SCO Accessibility: 
   Read Only 
 
 

 
Definition: Indication of whether the student has been in the SCO before. 
 
Usage: When a student enters the SCO for the first time the cmi.core.entry element 
should be set to ab-initio by the LMS.  If the student re-enters a suspended SCO then 
the entry flag should be set to resume by the LMS. 
 
Format: A set vocabulary phrase.  Three possible vocabulary values: 

• "ab-initio": This indicates it is the first time the student is entering the SCO.  
Because the student may have passed all of the objectives in a SCO by 
completing a pre-test, the lesson_status of not attempted is not a reliable 
indicator.  That is, a SCO may be passed without the student having ever 
seen it.  

• "resume": This indicates that the student was in the SCO earlier.  The 
student is resuming a suspended SCO. 

• "": The empty string should be used to represent an entry into the SCO that 
is neither an initial (ab-initio) nor a continuation from a suspended state 
(resume).  A scenario that this might be used is if the SCO was already 

3-26 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

completed and then later it was loaded for review purposes.  In this case it 
was neither an initial launch (ab-initio) nor a continuation from a suspended 
state (resume). 

 
LMS Behavior: 
   Initialization: Upon initial launch of the SCO the LMS should initialize the data model 

value to "ab-inito".  If the SCO is not being launched for the first time the 
LMS should initialize the data model value to "resume". 

   LMSGetValue():Returns the value stored in the data model.  The return must be one 
of the set vocabularies for the cmi.core.entry data element 

   Example Return Values:  
      "ab-initio" 
      "resume" 
   Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the 
element is not supported.  

                      NOTE element must be supported by LMS since the element is 
mandatory  

 
   LMSSetValue() : LMS should set an error code according to the following: 
   Error Code: 403 - Element is read only.   If a request attempts to invoke an 

LMSSetValue() on this element, then the LMS should set the error 
code to 204. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

                       NOTE element must be supported by LMS since the element is 
mandatory 

 
SCO Usage Example: 
var entryStatus = LMSGetValue("cmi.core.entry") 
if (LMSGetLastError() == "0") 
{ 
    if (entryStatus == "resume") 
    { 
       // Student is resuming SCO 
    } 
    else 
    { 
       // This is the first time the student has entered the SCO 
    } 
} 
else 
{ 
   // Error condition, handle appropriately 
} 

cmi.core.score 
Indication of the performance of the student. 
 
Children of cmi.core.score: 
 
raw, min, max 

cmi.core.score._children 
 
Supported API calls 
   LMSGetValue() 
 
LMS Mandatory: Yes 
 
Data Type: CMIString255 
 
SCO Accessibility: 
   Read Only 
 

 
Definition: The _children keyword is used to determine all of the elements in the score 
category that are supported by the LMS.  If an element has no children, but is 
supported, an empty string is returned.  If an element is not supported, there is no 
return.  A subsequent request for last error can verify that the element is not supported. 
 
Usage: Used to determine what cmi.core.score children are supported by the LMS.  
Raw is the only mandatory element that must be supported. 
 
Format: The return value is a comma separated list of all the element names in the 
score category that are supported by the LMS. 
 
LMS Behavior:  
    Initialization: The set of supported children for this group.  So that on an 
LMSGetValue() request, the appropriate list of supported children is returned  
 
    LMSGetValue(): Returns a comma separated list of supported elements. 
    Example API call: LMSGetValue("cmi.core.score._children") 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-27 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

    Example Return Values:          
             "raw" - conformant LMS's must support at least this element 
             “raw,min,max" 
             "raw,min" 
    Error Code: 401 - Not implemented error.  If this element is not supported an 

empty string is returned and an error code is set to indicate that 
the element is not supported.  

                        NOTE element must be supported by  LMS since the element is 
mandatory 

     
    LMSSetValue() : LMS should set an error code according to the following:  
    Error Code: 402 - Invalid set value, element is keyword.   If a request attempts to 

invoke an LMSSetValue() on this element, then the LMS should 
set the error code to 402. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

                       NOTE element must be supported by  LMS since the element is 
mandatory 

 
SCO Usage Example: 
   var scoreChildren =  LMSGetValue(“cmi.core.score._children”); 
 if (coreChildren.indexOf(“min”) != -1) 
 { 
     LMSSetValue(“cmi.core.score.min”,"10"); 
 } 
 

cmi.core.score.raw 
 
Supported API calls: 
   LMSGetValue() 
   LMSSetValue() 
 
LMS Mandatory: Yes 
 
Data Type: CMIDecimal or 

CMIBlank 
 
SCO Accessibility: 
   Read / Write 
 

 
Definition: Indication of the performance of the student during his last attempt on the 
SCO.  This score may be determined and calculated in any manner that makes sense 
to the SCO designer.  For instance, it could reflect the percentage of objectives 
complete, it could be the raw score on a multiple choice test, or it could indicate the 
number of correct first responses to embedded questions in a SCO. 
 
Usage: When the student is in their first attempt at a SCO the cmi.core.score.raw 
should be set to "" (empty string).  For additional attempts the cmi.core.score.raw 
reflects what was recorded on the student’s last previous attempt.  If no 
cmi.core.score.raw was set in a SCO and a request for the cmi.core.score.raw  was 
made by the SCO, then an empty string should be returned ("”). 
 
Format: Decimal number or blank. 
 
LMS Behavior:  
    Initialization: LMS should initialize this to an empty string ("") upon initial launch of a 

SCO.  The SCO is responsible for setting this value.  If an 
LMSGetValue() is requested before the SCO has set this value, then the 
LMS should return an empty string (“”) 

 
    LMSGetValue(): Returns  the value stored in the data model.  The value returned 

must be of type CMIDecimal or CMIBlank. 
    Example API call: LMSGetValue("cmi.core.score.raw") 
    Error Code: 401 - Not implemented error.  If this element is not supported an 

empty string is returned and an error code is set to indicate that 
the element is not supported.  

                       NOTE element must be supported by LMS since the element is 
mandatory 

     
    LMSSetValue() : Sets the data model element to the supplied value.  Value must 

match the data type for this element. 
    Example API call: LMSSetValue("cmi.core.score.raw","85.7") 
    Error Code: 405 – Incorrect Data Type: If the element is supported (element must 

be supported by LMS since the element is mandatory) and a 
request attempts to invoke an LMSSetValue() with a value that is 
not of the correct data type. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

                       NOTE element must be supported by  LMS since the element is 
mandatory 

3-28 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
    Example Return/Set Values:  
       “90" 
       "85.7" 
       ""  
SCO Usage Example: 
 The SCO could use this to keep track of the raw score of the student in the SCO. 
 
LMSSetValue("cmi.core.score.raw","85") 
 

cmi.core.score.max 
 
Supported API calls: 
   LMSGetValue() 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIDecimal or 

CMIBlank 
 
SCO Accessibility: 
   Read / Write 
 
 

 
Definition: The maximum score or total number that the student could have achieved.  
 
Usage: Indication of the largest score the student could have achieved. 
 
Format: Decimal number or blank. 
 
LMS Behavior:  
    Initialization: LMS should initialize this to an empty string ("") upon initial launch of a 

SCO.  The SCO is responsible for setting this value.  If an 
LMSGetValue() is requested before the SCO has set this value, then the 
LMS should return an empty string (“”) 

 
    LMSGetValue(): Returns  the value stored in the data model.  The value returned 

must be of type CMIDecimal or CMIBlank. 
    Example API call: LMSGetValue("cmi.core.score.max") 
     
    Error Code: 401 - Not implemented error.  If this element is not supported an 

empty string is returned and an error code is set to indicate that 
the element is not supported. 

     
    LMSSetValue() : Sets the data model element to the supplied value.  Value must 

match the data type for this element. 
    Example API call: LMSSetValue("cmi.core.score.max","100") 
    Error Code: 405 – Incorrect Data Type: If the element is supported and a request 

attempts to invoke an LMSSetValue() with a value that is not of the 
correct data type. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401by the LMS to indicate that the element is not 
supported. 

 
    Example Return/Set Values:  
       “100" 
       "5" 
       "" 
  
SCO Usage Example: 
var scoreChildren =  LMSGetValue(“cmi.core.score._children”); 
 if (coreChildren.indexOf(“max”) != -1) 
 { 
     LMSSetValue(“cmi.core.score.max”,"100"); 
 
 } 
  

cmi.core.score.min 
 
Supported API calls: 
   LMSGetValue() 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIDecimal or 

CMIBlank 
 
SCO Accessibility: 
   Read / Write 
 

 
Definition: The minimum score that the student could have achieved.  
 
Usage: Used to indicate the lowest score the student could have achieved. 
 
Format: Decimal number or blank. 
 
LMS Behavior:  
    Initialization: LMS should initialize this to an empty string ("") upon initial launch of a 

SCO.  The SCO is responsible for setting this value.  If an 
LMSGetValue() is requested before the SCO has set this value, then the 
LMS should return an empty string (“”) 

    

Sharable Content Object Reference Model (SCORM) Version 1.1 3-29 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

     LMSGetValue(): Returns  the value stored in the data model.  The value returned 
must be of type CMIDecimal or CMIBlank. 

    Example API call: LMSGetValue("cmi.core.score.min") 
    Error Code: 401 - Not implemented error.  If this element is not supported an 

empty string is returned and an error code is set to indicate that 
the element is not supported. 

     
    LMSSetValue() : Sets the data model element to the supplied value.  Value must 

match the data type for this element. 
    Example API call: LMSSetValue("cmi.core.score.min","5") 
    Error Code: 405 – Incorrect Data Type: If the element is supported and a request 

attempts to invoke an LMSSetValue() with a value that is not of the 
correct data type. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

 
    Example Return/Set Values:  
       “10" 
       "45.5" 
       "" 
  
SCO Usage Example: 
var scoreChildren =  LMSGetValue(“cmi.core.score._children”); 
 if (coreChildren.indexOf(“min”) != -1) 
 { 
     LMSSetValue(“cmi.core.score.min”,"10"); 
 } 
 

cmi.core.total_time 
 
Supported API calls: 
   LMSGetValue() 
 
LMS Mandatory: Yes 
 
Data Type: CMITimespan 
 
SCO Accessibility: 
   Read Only 
 

 
Definition: Accumulated time of all the student's sessions in the SCO.  
 
Usage: Used to keep track of the total time spent in every session of the given SCO for 
the given student.  LMS should initialize the cmi.core.total_time to a default value the 
first time SCO is launched and then use SCO reported values (session_time) to keep a 
running total. 
 
Format: Hours, minutes and seconds separated by a colon. HHHH:MM:SS.SS 
Hours has a minimum of 2 digits and a maximum of 4 digits.  Minutes shall consist of 
exactly 2 digits.  Seconds shall contain 2 digits, with an optional decimal point and 1 or 
2 additional digits. (i.e. 34.45). 
  
LMS Behavior:  
    Initialization: LMS should initialize this to "0000:00:00.00" upon initial launch of a 

SCO. 
    
    LMSGetValue(): Returns  the value stored in the data model.  The value returned 

must be of type CMITimespan. 
    Example API call: LMSGetValue("cmi.core.total_time") 
    Example Return Values:          
         “00:29:00" 
         "01:27:45.5" 
    Error Code: 401 - Not implemented error.  If this element is not supported an 

empty string is returned and an error code is set to indicate that 
the element is not supported. 

                       NOTE element must be supported by  LMS since the element is 
mandatory 

     
    LMSSetValue() : LMS should set an error code according to the following:  
    Error Code: 403 - Element is read only.   If a request attempts to invoke an 

LMSSetValue() on this element, then the LMS should set the error 
code to 403. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

                      NOTE element must be supported by  LMS since the element is 
mandatory 

  
SCO Usage Example: 

3-30 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 var totalTime =  LMSGetValue(“cmi.core.total_time”); 
 if (LMSGetLastError() == 0 ) 
 { 
     // Use cmi.core.total_time 
 }  

cmi.core.lesson_mode 
 
Supported API calls: 
   LMSGetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIVocabulary 

(Mode) 
"browse" 
"normal" 
"review" 
 
SCO Accessibility: 
   Read Only 
 
 
 

 
Definition: Identifies the SCO behavior desired after launch.  Many SCOs have a 
single “behavior”.  Some SCOs, however, can present different amounts of information, 
or present information in different sequences, or present information reflecting different 
training philosophies based on an instructor’s or designer’s decisions.  Designers may 
enable SCOs to behave in a virtually unlimited number of ways.  This standard 
supports the communication of three parameters that may result in different SCO 
behaviors. 
 
Usage: Used to represent the different modes that a SCO can be launched in.  Used in 
conjunction with lesson_status. 
 
Format: A set vocabulary phrase.  Three possible vocabulary values: 

• "browse": The student wants to preview the materials, but not necessarily 
challenge the SCO for a grade. 

• "normal": This indicates that the SCO should behave as designed for a 
student wanting to get credit for his learning. 

• "review": The student has already seen the material at least once and been 
graded. 

 
If an unrecognized or unanticipated lesson_mode is received, then normal is assumed 
by the SCO.  
  
LMS Behavior:  
    Initialization: LMS should determine the mode in which the SCO is being launched. 
    
    LMSGetValue(): Returns the value stored in the data model. The return must be one 

of the set vocabularies for the entry. 
    Example API call: LMSGetValue("cmi.core.lesson_mode") 
    Example Return Values:          
         “browse" 
         "normal" 

    Error Code: - 401 - Not implemented error.  If this element is not supported an error 
code is set to indicate that the element is not supported. 
     
    LMSSetValue() : LMS should set an error code according to the following:  
    Error Code: 403 - Element is read only.   If a request attempts to invoke an 

LMSSetValue() on this element, then the LMS should set the error 
code to 403. 

                        401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

  
SCO Usage Example: 
var mode =  LMSGetValue(“cmi.core.lesson_mode”); 
if (LMSGetLastError() == 0 ) 
{ 
   if (mode == "browse") 
   { 
      // Student is browsing the SCO 
   } 
   else if (mode == "review") 
   { 
      // Student has already seen an been graded 
      // Must be reviewing material  
   } 
   else 
   { 
      // Student is launching the SCO in the normal mode 
   } 
}  
 

cmi.core.exit 
  

         "review" 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-31 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

Supported API calls: 
   LMSSetValue() 
 
LMS Mandatory: Yes 
 
Data Type: CMIVocabulary 

(Exit) 
"time-out" 
"suspend" 
"logout" 
"" - empty string 
 
SCO Accessibility: 
   Write Only 
 
 

Definition: An indication of how or why the student left the SCO. 
 
Usage: Used to indicate the reason that the SCO was last exited. 
 
Format: A set vocabulary phrase.  Three possible vocabulary values: 

• "time-out": This indicates the SCO ended because the SCO has 
determined an excessive amount of time has elapsed, or the 
max_time_allowed has been exceeded.  The max_time_allowed can be 
found in the CSF (content | block | sco | timeLimit | maxTimeAllowed) 

• "suspend": This indicates the student leaves the SCO with the intent of 
returning to it later at the point where he/she left. 

• "logout": This indicates that the student logged out from within the SCO 
instead of returning to the LMS system to log out.  This implies that the SCO 
passed control to the LMS system, and the LMS system automatically 
logged the student out of the course -- after updating the appropriate data 
model elements. 

• "" : The empty string vocabulary should be used to represent a normal exit 
state. 

 
LMS Behavior:  
    Initialization: Element does not need initialized. There is never a LMSGetValue() 

done on this element.  Element is controlled by the SCO. 
    
    LMSGetValue(): LMS should set an error code according to the following and return 

an empty string ("").  
    Error Code: 401 - Not implemented error.  If this element is not supported an 

empty string is returned and an error code is set to indicate that 
the element is not supported. 

                       NOTE element must be supported by  LMS since the element is 
mandatory 

                       404 - Element is write only.  If a SCO tries to call LMSGetValue() on 
this element, the LMS should set the error code to 404 and return 
an empty string (""). 

     
    LMSSetValue() : Sets the data model element to the supplied value.  Value must 

match the data type for this element.     
    Example API call: LMSSetValue("cmi.core.exit","logout")  
    Example Set Values: 
       "time-out" 
       "suspend" 
       "logout" 
    Error Code: 405 – Incorrect Data Type: If the element is supported (element must 

be supported by LMS since the element is mandatory) and a 
request attempts to invoke an LMSSetValue() with a value that is 
not of the correct data type. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

                      NOTE element must be supported by  LMS since the element is 
mandatory 

  
SCO Usage Example: 
LMSSetValue("cmi.core.exit","time-out") 
 

cmi.core.session_time 
 
Supported API calls: 
   LMSSetValue() 
 
LMS Mandatory: Yes 
 
Data Type: Timespan 
 
SCO Accessibility: 
   Write Only 
 

 
Definition: This is the amount of time in hours, minutes and seconds that the student 
has spent in the SCO at the time they leave it.  That is, this represents the time from 
beginning of the session to the end of a single use of the SCO. 
 
Usage: Used to keep track of the time spent in a SCO for a session.  The LMS will use 
this time in determining the cmi.core.total_time. 
 
Format: A length of time in hours, minutes and seconds shown in the following 
numerical format: HHHH:MM::SS.SS   
Hours has a minimum of 2 digits and a maximum of 4 digits.  Minutes shall consist of 
exactly 2 digits.  Seconds shall contain 2 digits, with an optional decimal point and 1 or 
2 additional digits. (i.e. 34.45). 
 

3-32 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

LMS Behavior:  
    Initialization: Element does not need initialized by the LMS.  There is never a 

LMSGetValue() call made on this element.  The SCO controls this 
element. 

    
    LMSGetValue():LMS should set an error code according to the following and return 

an empty string ("").  
    Error Code: 401 - Not implemented error.  If this element is not supported an 

empty string is returned and an error code is set to indicate that 
the element is not supported. 

                       NOTE element must be supported by  LMS since the element is 
mandatory 

                       404 - Element is write only.  If a SCO tries to call LMSGetValue() on 
this element, the LMS should set the error code to 404 and return 
an empty string (""). 

 
    LMSSetValue():Sets the data model element to the supplied value.  Value must 

match the data type for this element. 
    Example API call: LMSSetValue(“cmi.core.session_time”,"0010:34:34.56") 
    Example Set Values: 
       "0010:34:34.56" 
       "05:15:00" 
    Error Code: 205 – Incorrect Data Type: If an LMSSetValue() is invoked and the 

value to be used to set the element to is not of the correct Data 
Type. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

                      NOTE element must be supported by  LMS since the element is 
mandatory 

  
SCO Usage Example: 
LMSSetValue("cmi.core.session_time","0000:12:30") 

 

cmi.suspend_data 
 
Supported API calls: 
    LMSGetValue() 
    LMSSetValue() 
 
LMS Mandatory: Yes 
 
Data Type: CMIString4096 
 
SCO Accessibility: 
   Read / Write 
 

 
Definition: Unique information generated by the SCO during previous uses that is 
needed for the current use.  This unique information is applicable to a launching SCO.  
Normally this is the element used by the SCO for restart information.  This is normally 
data that is created by the SCO and stored by the LMS to pass back to the SCO the 
next time the SCO is run. 
The LMS must set aside a space for this group for each SCO for each student.  It 
stores this data and returns it to the SCO when it is run again.  The LMS shall retain 
this data as long as the student is in the course. 
 
Usage: Only available on restart of a SCO.  SCO could set this value if a student exits 
before SCO is completed.  The SCO then could use this information on restart. 
 
Format: SCO unique.  The only limitations on this data are:  

1. Data must be transferred in ASCII format.  The SCO may then convert it to any 
form that it requires. 

2. To avoid over-burdening the LMS this element should be limited by 4096 bytes 
of data. 

 
LMS Behavior:  
    Initialization: LMS should initialize this element to blank (empty string).  The SCO is 

responsible for setting this element.  If an LMSGetValue() is requested 
before the SCO has set this value, then the LMS should return an empty 
string (“”) 

    
    LMSGetValue():Returns  the value stored in the data model. The return must be of 

the correct data type. 
    Error Code: 401 - Not implemented error.  If this element is not supported an 

empty string is returned and an error code is set to indicate that 
the element is not supported. 

                       NOTE element must be supported by  LMS since the element is 
mandatory 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-33 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

    LMSSetValue():Sets the data model element to the supplied value.  Value must 
match the data type for this element. 

    Error Code: 405 – Incorrect Data Type: If the element is supported and a request 
attempts to invoke an LMSSetValue() with a value that is not of the 
correct data type. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

                      NOTE element must be supported by  LMS since the element is 
mandatory 

 
    Example Return/Set Values: 
       SCO implementation dependent 
  
SCO Usage Example: 
// Upon re-launch of a SCO by a student 
// Get the Suspend Data 
var suspendData = LMSGetValue("cmi.suspend_data") 
if (LMSGetLastError() == 0) 
{ 
   // Use suspend data     
}  

 

cmi.launch_data 
 
Supported API calls: 
   LMSGetValue() 
 
LMS Mandatory: Yes 
 
Data Type: CMIString4096 
 
SCO Accessibility: 
   Read Only 
 

 
Definition: Unique information generated at the SCO’s creation that is needed for 
every use.  Without this information, a SCO may not execute.  
 
Usage: The cmi.launch_data is available to the SCO to aid in launching the SCO.  This 
will always be the same for a given SCO. 
 
Format: Text field. This contains whatever system-unique information is necessary for 
the SCO to function well.  This field is limited to 4096 characters. 
 
LMS Behavior:  
    Initialization: This value should be initialized by the LMS using the CSF.  The LMS 

should use the content | block | sco | launch | dataFromLMS CSF 
element.  If no launch data is found in the CSF, then the launch data 
should be set to an empty string (""). 

    
    LMSGetValue():Returns  the value stored in the data model. The return must be of 

the correct data type. 
    Error Code: 401 - Not implemented error.  If this element is not supported an 

empty string is returned and an error code is set to indicate that 
the element is not supported. 

                       NOTE element must be supported by  LMS since the element is 
mandatory 

     
    LMSSetValue(): LMS should set an error code according to the following: 
    Error Code: 403 - Element is read only.   If a request attempts to invoke an 

LMSSetValue() on this element, then the LMS should set the error 
code to 403. 

                        401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

SCO Usage Example: 
var launchData = LMSGetValue("cmi.launch_data") 
if (LMSGetLastError() == 0) 
{ 
   // use launch_data 
} 

 

cmi.comments 
Mechanism for collecting and distributing comments for a SCO. 
 
cmi.comments - represents the ability for the SCO to Get/Set comments 
cmi.comments_from_lms - represents the ability to provide comments to the SCO (read only from a SCO perspective). 

3-34 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

cmi.comments 
 
Supported API calls: 
   LMSGetValue() 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIString4096 
 
SCO Accessibility: 
   Read / Write 
 

 
Definition: Freeform feedback from the SCO.  For example, the student may 
have the option of leaving comments at any point in the SCO, or they may be 
asked for comments at the end of the SCO.  The comment may also have an 
indication of where or when in the SCO it was created.  A location may be 
tagged and embedded in the comment. 
 
Usage: Used to allow the SCO to send comments to the LMS about the 
SCO. Could be used to collect student entered comments. 
 
Format: Freeform alphanumeric text and special characters. 
 
LMS Behavior:  
    Initialization: None, should be initialized to an empty string ("").  The SCO 
is responsible for setting this value.  If an LMSGetValue() is requested before 
the SCO has set this value, then the LMS should return an empty string (“”) 
    
    LMSGetValue():Returns  the value stored in the data model. The return 

must be of the correct data type.  If no comments were 
provided the LMS should return an empty string (""). 

    Error Code: 401 - Not implemented error.  If this element is not 
supported an empty string is returned and an error code 
is set to indicate that the element is not supported. 

     
    LMSSetValue(): Sets the data model element to the supplied value.  The 

LMSSetValue() request sets the comments.  The comments 
should be concatenated together. 

    Error Code: 401 - Not implemented error. If this element is not supported 
an error code is set to 401 by the LMS to indicate that 
the element is not supported. 

                        405 – Incorrect Data Type: If the element is supported and a 
request attempts to invoke an LMSSetValue() with a 
value that is not of the correct data type. 

 
    Example Return/Set Values: 
       SCO implementation dependent 
  
SCO Usage Example: 
var comments = LMSGetValue("cmi.comments") 
if (LMSGetLastError() == 0) 
{ 
   // use launch_data 
} 
 

cmi.comments_from_lms 
 
Supported API calls: 
   LMSGetValue()  
 
LMS Mandatory: No 
 
Data Type: CMIString4096 
 
SCO Accessibility: 
   Read Only 
 

 
Definition: This element represents comments that would come from the 
LMS.  An example of how this might be used is in the form of instructor 
comments.  These types of comments are directed at the student that the 
SCO may present to the student when appropriate.  
 
Usage: Used to allow the SCO to see any comments related to the SCO that 
originated in the LMS.  
 
Format: no specific format 
  
LMS Behavior:  
    Initialization: These comments should be initialized by the LMS if provided. 
    
    LMSGetValue():Returns  the value stored in the data model.  The return 

must be of the correct data type.  If no instructor comments 
were provided the LMS should return an empty string (""). 

    Example API call: LMSGetValue("cmi.comments_from_lms") 
    Example Return Values:          
         Implementation dependent 
    Error Code: 401 - Not implemented error.  If this element is not 

supported an empty string is returned and an error code 
is set to indicate that the element is not supported. 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-35 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

     
    LMSSetValue(): LMS should set an error code according to the following: 
    Error Code: 403 - Element is read only.   If a request attempts to invoke 

an LMSSetValue() on this element, then the LMS should 
set the error code to 403. 

                        401 - Not implemented error. If this element is not supported 
an error code is set to 401 by the LMS to indicate that 
the element is not supported. 

  
SCO Usage Example: 
// The SCO may want to see if there are any comments from the LMS for the 
student. 
var commentsFromLMS = LMSGetValue("cmi.comments_from_lms"); 
if (LMSGetLastError() == "0") 
{ 
   // use the comments from the LMS 
} 

 

cmi.objectives 
Identifies how the student has performed on individual objectives covered in the SCO. 
 
Children of cmi.objectives: 
 
id, score, status 
 

cmi.objectives._children 
 
Supported API calls: 
   LMSGetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIString255 
 
SCO Accessibility: 
   Read Only 

 
Definition: The children keyword is used to determine all of the elements in the 
cmi.objectives category that are supported by the LMS.  If an element has no children, but 
is supported, an empty string is returned.  If an element is not supported, there is no 
return.  A subsequent request for last error can verify that the element is not supported.  
 
Usage: Used to determine which elements are supported by the LMS. 
 
Format: The return value is a comma separated list of all the element names in the 
cmi.objectives category that are supported by the LMS.  Identifies what detailed 
information can be collected, on the student’s performance in complex scenarios, such as 
simulations. 
 
LMS Behavior:  
    Initialization: The set of supported children for this group.  So that on an 
LMSGetValue() request, the appropriate list of supported children is returned  
 
    LMSGetValue(): Returns a comma separated list of supported elements 
    Example API call: LMSGetValue("cmi.objectives._children") 
    Example Return Values:          
       “id,score” 
       "id,status"  
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported.  

     
    LMSSetValue(): LMS should set an error code according to the following: 
    Error Code: 402 - Invalid set value, element is a keyword.   If the element is 

supported by the LMS and a request attempts to invoke an 
LMSSetValue() on this element, then the LMS should set the error 
code to 402. 

                        401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

 
SCO Usage Example: 
SCO could use this element to determine which elements are supported by the LMS 
 
var objChildren = LMSGetValue("cmi.objectives._children") 
if (objChildren.indexOf(“status”) != -1) 
{ 
    // Set the Objectives Status 

3-36 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

} 
cmi.objectives._count 
 
Supported API calls: 
   LMSGetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIInteger 
 
SCO Accessibility: 
   Read Only 

 
Definition: The _count keyword is used to determine the current number of records in the 
cmi.objectives list.  The total number of entries is returned.  If the SCO does not know the 
count of the cmi.objectives records, it can begin the current student count with 0.  This 
would overwrite any information about objectives currently stored in the first index 
position.  Overwriting or appending is a decision that is made by the SCO author when 
he/she creates the SCO. 
 
Usage: Used to determine the number of objectives stored by the LMS.  SCOs could use 
this number to determine which objective record to retrieve.  If "3'" is returned then the 
SCO knows that it can reference record 0-2.  
 
Format: Returns the value as an integer that indicates the number of items currently in 
an element list or array. 
 
LMS Behavior:  
    Initialization: LMS is responsible for initializing this to 0 on initial launch of a SCO, no 

objective data has been inserted by the SCO. 
 
    LMSGetValue(): Returns the total number of objective entries stored by  the LMS 
    Example API call: LMSGetValue("cmi.objectives._count") 
    Example Return Values:          
       “0” 
       "4"  
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported.  

     
    LMSSetValue(): LMS should set an error code according to the following: 
    Error Code: 402 - Invalid set value, element is a keyword.   If the element is 

supported by the LMS and a request attempts to invoke an 
LMSSetValue() on this element, then the LMS should set the error 
code to 402. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported.                                 

 
SCO Usage Example: 
SCO could use the _count element to determine which array index to use later in the 
process 
 
// get the count of objectives recorded by the LMS  
var totalObj = LMSGetValue("cmi.objectives._count") 
 
// The value return from the LMS is the total number record 
 
// subtract one from the total (to compensate for the zero based array) 
var request = "cmi.objectives." + totalObj - 1 + ".id" 
 
// Call set on the new Objective ID 
LMSSetValue(request, "Obj1_110") 
 

cmi.objectives.n.id 
 
Supported API calls: 
   LMSGetValue() 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIIdentifier 
 
SCO Accessibility: 
   Read / Write 
 

 
Definition: An internally, developer defined, SCO specific identifier for an objective.   
 
Usage: Way of identifying an objective.  
 
Format: Alpha-numeric string. No internal spaces. 
 
LMS Behavior:  
    Initialization: Initialized to an empty string ("").  The SCO is responsible for setting this 
value.  If an LMSGetValue() is requested before the SCO has set this value, then the LMS 
should return an empty string (“”) 
 
    LMSGetValue(): Returns the objectives id stored in the LMS.  The returned value must 

match the associated data type. 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-37 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

    Example API call: LMSGetValue("cmi.objectives.0.id") 
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported.  

     
    LMSSetValue(): Sets the data model element to the supplied value.  Value must match 

the data type for this element. 
    Error Code: 405 – Incorrect Data Type If the element is supported and a request 

attempts to invoke an LMSSetValue() with a value that is not of the 
correct data type. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

 
    Example Return/Set Values: 
       "A1317" 
       "Obj123"               
 
SCO Usage Examples: 
SCO may want to display summary information about the objectives. 
 
var objID = LMSGetValue("cmi.objectives.0.id") 
// Display the objective ID for the SCO 
 
SCO may want to set the objective ID for reporting reasons. 
LMSSetValue("cmi.objectives.0.id","Obj1") 
 
 

cmi.objectives.n.score 
Each objective can contain an associated score 
 
Children of cmi.objectives.n.score: 
 
raw, min, max 
 

cmi.objecitves.n.score._children 
 
Supported API calls: 
   LMSGetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIString255 
 
SCO Accessibility: 
   Read Only 
   

 
Definition: The children keyword is used to determine all of the elements in the 
cmi.objectives.n.score  category that are supported by the LMS.  If an element has no 
children, but is supported, an empty string is returned.  If an element is not supported, 
there is no return.  A subsequent request for last error can verify that the element is not 
supported.  
 
Usage: Used to determine which elements are supported by the LMS.  
 
Format: The return value is a comma separated list of all the element names in the 
cmi.objectives.n.score category that are supported by the LMS.  
 
LMS Behavior:  
    Initialization: The set of supported children for this group.  So that on an 
LMSGetValue() request, the appropriate list of supported children is returned  
 
    LMSGetValue(): Returns a comma separated list of supported elements. 
    Example API call: LMSGetValue("cmi.objectives.0.score._children") 
    Example Return Values:          
       “raw,min,max” 
       "raw" 
       "" 
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported.  

     
    LMSSetValue(): LMS should set an error code according to the following: 
    Error Code: 402 - Invalid set value, element is a keyword.   If the element is 

supported by the LMS and a request attempts to invoke an 
LMSSetValue() on this element, then the LMS should set the error 
code to 402. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 

3-38 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

supported. 
 
SCO Usage Example: 
SCO could use this element to determine which elements are supported by the LMS 
 
var objScoreChildren = LMSGetValue("cmi.objectives.0.score") 
if (objScoreChildren.indexOf(“raw”) != -1) 
{ 
    // Set the Objectives score 
} 
 

cmi.objectives.n.score.raw 
 
Supported API calls: 
   LMSGetValue() 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIDecimal 

or CMIBlank 
 
SCO Accessibility: 
   Read / Write 
 

 
Definition: Numerical representation of student performance after each attempt on the 
objective.  May be unprocessed raw score. 
  
Usage: Raw score after each attempt for an objective.  
 
Format: Decimal number or blank. 
 
LMS Behavior:  
    Initialization: Element should be initialized to an empty string ("").  The SCO is 
responsible for setting this value.  If an LMSGetValue() is requested before the SCO has 
set this value, then the LMS should return an empty string (“”) 
 
    LMSGetValue(): The LMS should return the objectives raw score identified by the 

request.  The returned value must match the associated data type.  
    Example API call: LMSGetValue("cmi.objectives.0.score.raw") 
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported.  

     
    LMSSetValue(): Sets the data model element to the supplied value.  Value must match 

the data type for this element.  
    Example API call: LMSSetValue("cmi.objectives.0.score.raw","5") 
    Error Code: 405 – Incorrect Data Type If the element is supported and a request 

attempts to invoke an LMSSetValue() with a value that is not of the 
correct data type. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

                 
    Example Return/Set Values: 
       "96.7" 
       "5" 
       "" 
 
SCO Usage Example: 
SCO could use this to set a raw score associated with an objective. 
 
var objScoreChildren = LMSGetValue("cmi.objectives.0.score") 
if (objScoreChildren.indexOf(“raw”) != -1) 
{ 
    LMSSetValue("cmi.objectives.0.score.raw","85") 
} 

cmi.objectives.n.score.max 
 
Supported API calls: 
   LMSGetValue() 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIDecimal 

or CMIBlank 
 
SCO Accessibility: 
   Read / Write 
 

 
Definition: The maximum score or total number that the student could have achieved on 
the objective.  
 
Usage: Max score after each attempt for an objective. 
 
Format: Decimal number or blank. 
 
LMS Behavior:  
    Initialization: Element should be initialized to an empty string ("").  The SCO is 
responsible for setting this value.  If an LMSGetValue() is requested before the SCO has 
set this value, then the LMS should return an empty string (“”) 
 
    LMSGetValue(): The LMS should return the objectives max score identified by the 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-39 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

request.  The returned value must match the associated data type. 
    Example API call: LMSGetValue("cmi.objectives.0.score.max") 
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported.  

     
    LMSSetValue(): Sets the data model element to the supplied value.  Value must match 

the data type for this element.  
    Example API call: LMSSetValue("cmi.objectives.0.score.max","10") 
    Error Code: 405 – Incorrect Data Type: If the element is supported and a request 

attempts to invoke an LMSSetValue() with a value that is not of the 
correct data type. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported.   

                 
    Example Return/Set Values: 
       "100" 
       "10" 
       "" 
 
SCO Usage Example: 
SCO could use this to set a max score associated with an objective. 
 
var objScoreChildren = LMSGetValue("cmi.objectives.0.score") 
if (objScoreChildren.indexOf(“max”) != -1) 
{ 
    LMSSetValue("cmi.objectives.0.score.max","5") 
} 

cmi.objectives.n.score.min 
 
Supported API calls: 
   LMSGetValue() 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIDecimal 

or CMIBlank 
 
SCO Accessibility: 
   Read / Write 
 

 
Definition: The minimum score that the student could have achieved on the objective.  
 
Usage: Min score after each attempt for an objective. 
 
Format: Decimal number or blank. 
 
LMS Behavior:  
    Initialization: Element should be initialized to an empty string ("").The SCO is 
responsible for setting this value.  If an LMSGetValue() is requested before the SCO has 
set this value, then the LMS should return an empty string (“”) 
 
    LMSGetValue(): The LMS should return the objectives min score identified by the 

request.  The returned value must match the associated data type.  
    Example API call: LMSGetValue("cmi.objectives.0.score.min") 
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported.  

     
    LMSSetValue(): Sets the data model element to the supplied value.  Value must match 

the data type for this element. 
    Example API call: LMSSetValue("cmi.objectives.0.score.min","5") 
    Error Code: 405 – Incorrect Data Type: If the element is supported and a request 

attempts to invoke an LMSSetValue() with a value that is not of the 
correct data type. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

 
    Example Return/Set Values: 
       "0" 
       "45.5" 
       "" 
 
SCO Usage Example: 
SCO could use this to set a min score associated with an objective. 
 
var objScoreChildren = LMSGetValue("cmi.objectives.0.score") 
if (objScoreChildren.indexOf(“min”) != -1) 
{ 

3-40 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

    LMSSetValue("cmi.objectives.0.score.min","2") 
} 

cmi.objectives.n.status 
 
Supported API calls 
   LMSGetValue() 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: 

CMIVocabulary 
(Status) 

"passed" 
"completed"   
"failed"    
"incomplete" 
"browsed"   
"not attempted" 
 
SCO Accessibility: 
   Read / Write 
 

 
Definition: The status of the SCO’s objective obtained by the student after each attempt 
to master the SCO’s objective.  Only 6 possible vocabulary values: passed, completed, 
failed, incomplete, not attempted or browsed. 
 
Usage: Used to keep track of the students statuses for a given objective. 
 
Format: A set vocabulary phrase.  Six possible vocabulary values: 

• "passed: Necessary number of objectives in the SCO were mastered, or the 
necessary score was achieved.  Student is considered to have completed the 
SCO and passed. 

• "completed": The objective may or may not be passed, but objective was 
experienced by the student.  The student is considered to have completed the 
objective.  For instance, passing may depend on a certain score known to the 
LMS system.  The SCO knows the raw score but not whether that raw score 
was high enough to pass the objective. 

• "failed": The objective was not passed.  The objective may or may not have 
been completed by the student.  The student is considered to have experienced 
the material associated with the objective and failed. 

• "incomplete": The material associated with the objective  was begun but not 
finished. 

• "browsed": The student launched the SCO containing the material associated 
with the objective with an LMS mode of Browse on the initial attempt. 

• "not attempted": Incomplete implies that the student made an attempt to 
perform the SCO, but for some reason was unable to finish it.  Not attempted 
means that the student did not even begin the SCO containing the objective. 
Maybe he just read the table of contents, or SCO abstract and decided he was 
not ready.  Any algorithm within the SCO may be used to determine when the 
objective moves from "not attempted" to "incomplete". 

 
LMS Behavior:  
    Initialization: Handled by the SCO. 
 
    LMSGetValue(): The LMS should return the objectives status identified by the request.  

The returned value must match the associated data type.  
    Example API call: LMSGetValue("cmi.objectives.0.status")  
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported.  

     
    LMSSetValue(): Sets the data model element to the supplied value.  Value must match 

the data type for this element. 
    Example API call: LMSSetValue("cmi.objectives.0.status","failed") 
    Error Code: 405 – Incorrect Data Type: If the element is supported and a request 

attempts to invoke an LMSSetValue() with a value that is not of the 
correct data type. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

                 
    Example Return/Set Values: 
       “not attempted"   
       "passed" 
       "browsed" 
 
SCO Usage Example: 
SCO could use this to set a status associated with an objective 
 
var objScoreChildren = LMSGetValue("cmi.objectives._children") 
if (objScoreChildren.indexOf(“status”) != -1) 
{ 
    LMSSetValue("cmi.objectives.0.status","failed") 
} 
 

cmi.student_data 
Information to support customization of a SCO based on a student’s performance.  

Sharable Content Object Reference Model (SCORM) Version 1.1 3-41 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
Children of cmi.student_data: 
 
mastery_score, max_time_allowed, time_limit_action 
    

cmi.student_data._children 
 
Supported API calls: 
   LMSGetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIString255 
 
SCO Accessibility: 
   Read Only 
 
 
 
 
 

 
Definition: The _children keyword is used to determine all of the elements in the 
student_data category that are supported by the LMS.  If an element has no children, 
but is supported, an empty string is returned.  If an element is not supported, an empty 
string is returned.  A subsequent request for last error can verify that the element is not 
supported. 
 
Usage: To determine which cmi.student_data data elements are supported by the 
LMS. 
 
Format: The return value is a comma-separated list of all of the element names in the 
student_data category that are supported by the LMS.   
 
LMS Behavior:  
    Initialization: The set of supported children for this group.  So that on an 
LMSGetValue() request, the appropriate list of supported children is returned  
 
    LMSGetValue(): LMS returns a comma separated list of supported elements 
    Example Return Values:           
         “mastery_score,time_limit_action,max_time_allowed” 
         "max_time_allowed" 
    Error Code: 401 - Not implemented error.  If this element is not supported an 

empty string is returned and an error code is set to indicate that 
the element is not supported.  

                         
    LMSSetValue() : LMS should set an error code according to the following: 
    Error Code: 402 - Invalid set value, element is a keyword.   If the element is 

supported by the LMS and a request attempts to invoke an 
LMSSetValue() on this element, then the LMS should set the error 
code to 402. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported.   

                       
SCO Usage Example: 
   var studentDataChildren =  
LMSGetValue(“cmi.student_data._children”); 
 if (studentDataChildren.indexOf(“attempt_number”) != -1) 
 { 
      var maxTimeAllowed =            

LMSGetValue(“cmi.student_data.max_time_allowed”); 
 } 
 
 

cmi.student_data.mastery_score 
 
Supported API calls: 

LMSGetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIDecimal 
 
SCO Accessibility: 

 

 

Read Only 

 
Definition: The passing score, as determined outside the SCO.  When the SCO score 
is greater than or equal to the mastery score, the student is considered to have 
passed, or mastered the content.  In some cases, the SCO does not know what this 
passing score is, because it is determined by the LMS system. 

Usage: For an LMS system to support mastery_score, it must be able to change the 
lesson_status based on the score passed to if from the SCO.  Just passing a 
mastery_score to a SCO does not constitute full support for this feature. 
 
Format: Decimal number 
 
LMS Behavior:  
    Initialization: LMS is responsible – value obtained from Content Structure Format 

content | block | sco | masteryScore 
    
    LMSGetValue(): Returns the current value stored by the LMS. 
    Example Return Values:  

“75” 

3-42 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

“100” 
“5” 

    Error Code: 401 - Not implemented error.  If this element is not supported an 
empty string is returned and an error code is set to indicate that 
the element is not supported.  

     
    LMSSetValue() : LMS should set an error code according to the following: 
    Error Code: 403 - Element is read only.   If the element is supported by the LMS 

and  a request attempts to invoke an  LMSSetValue() on this 
element, then the LMS should set the error code to 403. 

                        401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

 
SCO Usage Example: 
var masteryScoreValue = 

LMSGetValue(“cmi.student_data.mastery_score”); 
    

cmi.student_data.max_time_allowed 
 
Supported API calls: 

LMSGetValue() 
 
LMS Mandatory: No 
 
Data Type: CMITimespan 
 
SCO Accessibility: 

Read Only 
 

 
Definition: The amount of time the student is allowed to have in the current attempt on 
the SCO.  See time_limit_action for the SCO’s expected response to exceeding the 
limit.  
 
Usage: Used to present the SCO with the maximum amount of time that the student is 
allowed to be in the SCO. 
 
Format: Hours, minutes and seconds separated by a colon. HHHH:MM:SS.SS 
Hours has a minimum of 2 digits and a maximum of 4 digits.  Minutes shall consist of 
exactly 2 digits.  Seconds shall contain 2 digits, with an optional decimal point and 1 or 
2 additional digits. (i.e. 34.45). 
 
LMS Behavior:  
    Initialization: LMS is responsible – value obtained from Content Structure Format 

content | block | sco | timeLimit | maxTimeAllowed 
    
    LMSGetValue(): Returns the current value stored by the LMS. 
    Example Return Values:  

“00:14:30” 
“02:03:00” 
“01:09:00” 

    Error Code: 401 - Not implemented error.  If this element is not supported an 
empty string is returned and an error code is set to indicate that 
the element is not supported.  

     
    LMSSetValue() : LMS should set an error code according to the following: 
    Error Code: 403 - Element is read only.   If the element is supported by the LMS 

and  a request attempts to invoke an  LMSSetValue() on this 
element, then the LMS should set the error code to 403. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

     
SCO Usage Example: 
var maxTimeAllowedValue = 

LMSGetValue(“cmi.student_data.max_time_allowed”); 
    

cmi.student_data.time_limit_action 
 
Supported API calls: 

LMSGetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIVocabulary 

(Time Limit Action) 
“exit,message” 
“exit,no message” 
“continue,message” 

 
Definition: Tells the SCO what to do when the max_time_allowed is exceeded.  There 
are two arguments for this element: 
    What the SCO should do – exit or continue 
    What the student should see – message or no message 
 
Usage: Used to indicate to the SCO what the action should be when the maximum 
time allowed in the SCO has been exceeded. 
 
Format: A set vocabulary phrase.  Four possible vocabulary values: 

• “exit,message” 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-43 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

“continue,no message” 
 
SCO Accessibility: 

Read Only 
 
 

 
LMS Behavior:  
    Initialization: LMS is responsible – value obtained from Content Structure Format 

content | block | sco | timeLimit | timeLimitAction 
    
    LMSGetValue(): Returns the current value stored by the LMS. 
    Example Return Values:  

"exit,message" 
"continue,no message" 

    Error Code: 401 - Not implemented error.  If this element is not supported an 
empty string is returned and an error code is set to indicate that 
the element is not supported.  

     
    LMSSetValue() : LMS should set an error code according to the following: 
    Error Code: 403 - Element is read only.   If the element is supported by the LMS 

and  a request attempts to invoke an  LMSSetValue() on this 
element, then the LMS should set the error code to 403. 

                        401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

     
SCO Usage Example: 
var timeLimitActionValue = 

LMSGetValue(“cmi.student_data.time_limit_action”); 
 
    

• “exit,no message” 
• “continue,message” 
• “continue,no message” 

 

cmi.student_preference 
Selected options that are appropriate for subsequent SCOs 
 
Children of cmi.student_preference: 
 
audio, language, speed, text 
    

cmi.student_preference._children 
 
Supported API calls: 
   LMSGetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIString255 
 
SCO Accessibility: 
   Read Only 
 
 
 
 
 

 
Definition: The _children keyword is used to determine all of the elements in the 
student_preference category that are supported by the LMS.  If an element has no 
children, but is supported, an empty string is returned.  If an element is not supported, 
an empty string is returned.  A subsequent request for last error can verify that the 
element is not supported. 
 
Usage: To determine which cmi.student_preference data elements are supported by 
the LMS. 
 
Format: The return value is a comma separated list of all of the element names in the 
student_preference category that are supported by the LMS.   
 
LMS Behavior:  
    Initialization: The set of supported children for this group.  So that on an 
LMSGetValue() request, the appropriate list of supported children is returned  
 
    LMSGetValue(): LMS returns a comma separated list of supported elements 
    Example Return Values:           
         “audio, language, speed” 
         "language" 
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 
string is returned and an error code is set to indicate that the element is not supported.  
                         
    LMSSetValue() : LMS should set an error code according to the following: 
    Error Code: 402 - Invalid set value, element is a keyword.   If the element is 

supported by the LMS and a request attempts to invoke an 
LMSSetValue() on this element, then the LMS should set the error 
code to 402. 

3-44 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

                         
SCO Usage Example: 
   var studentPreferenceChildren =  
LMSGetValue(“cmi.student_preference._children”); 
 if (studentPreferenceChildren.indexOf(“audio”) != -1) 
 { 
      LMSSetValue(“cmi.student_preference.audio”, “10”); 
 } 
 
 

cmi.student_preference.audio 
 
Supported API calls: 

LMSGetValue() 
LMSSetValue() 

 
 
LMS Mandatory: No 
 
Data Type: CMIInteger 
 
SCO Accessibility: 

Read  
Write 

 

 
Definition: Audio may be turned off, or its volume controlled.  The element indicates 
whether the audio is turned off, or on. 
 
Usage: Used by the SCO to both set and obtain from the LMS audio preferences of 
the student. 
 
Format: Digit from -1 to 100 
     -1: is off (any negative number is an off command) 
      0: is a no-change status (the SCO uses its defaults or the status of the audio 

remains the same as the last SCO taken) 
      1 - 100: is volume level  (1 is soft, 100 is loudest as possible)   
 
LMS Behavior:  
    Initialization: If supported, the LMS should initialize this value to “0”. It is the 
responsibility of the SCO to set this value.  If an LMSGetValue() is requested before the 
SCO has set this value, then the LMS should return an empty string (“”) 
    
    LMSGetValue(): Returns the current value stored by the LMS. 
    Error Code: 401 - Not implemented error.  If element is not supported an empty 

string is returned and an error code is set to indicate that the element is 
not supported.     

    LMSSetValue() : Sets the LMS data item to the value passed in as a parameter 
    Error Code: 405 – Incorrect Data Type: If the element is supported and a request 

attempts to invoke an LMSSetValue() with a value that is not of the 
correct data type. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

 
Example Return/Set Values:  

“-1" 
"0" 
"50" 

 
SCO Usage Example: 
LMSSetValue(“cmi.student_preference.audio”, “10”); 
var audioValue = LMSGetValue(“cmi.student_preference.audio”); 

 
    

cmi.student_preference.language 
 
Supported API calls: 

LMSGetValue() 
LMSSetValue() 

 
 
LMS Mandatory: No 
 
Data Type: CMIString255 
 
SCO Accessibility: 

Read  
Write 

 
 

 
Definition: For SCOs with multi-lingual capability, this element should be used to 
identify in what language the information should be delivered. 
 
Usage: Used by the SCO to both set and obtain from the LMS language preferences 
for the student. 
 
Format: Alphabetic string, may include white space. 
 
LMS Behavior:  
    Initialization: If supported the LMS should initialize this value to an empty string (“”).  
It is the responsibility of the SCO to set this value.  If an LMSGetValue() is requested 
before the SCO has set this value, then the LMS should return an empty string (“”) 
    
    LMSGetValue(): Returns the current value stored by the LMS. 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-45 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

    Error Code: 401 - Not implemented error.  If element is not supported an empty 
string is returned and an error code is set to indicate that the element is 
not supported.     

     
    LMSSetValue() : Sets the LMS data item to the value passed in as a parameter 
    Error Code: 405 – Incorrect Data Type: If the element is supported and a request 

attempts to invoke an LMSSetValue() with a value that is not of the 
correct data type. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401by the LMS to indicate that the element is not 
supported. 

 
Example Return/Set Values:  

"English" 
"French" 

 
SCO Usage Example: 
LMSSetValue(“cmi.student_preference.language”, “English”); 
var languageValue = 

LMSGetValue(“cmi.student_preference.language”); 
 
    

cmi.student_preference.speed 
 
Supported API calls: 

LMSGetValue() 
LMSSetValue() 

 
 
LMS Mandatory: No 
 
Data Type: CMISInteger 
 
SCO Accessibility: 

Read  
Write 

 
LMS Behavior:  

Example Return/Set Values:  

 

 
Definition: SCOs may sometimes be difficult to understand because of the pace.  This 
element controls the pace of the content delivery. 
 
Usage: Used by the SCO to both set and obtain from the LMS speed preferences of 
the student. 
 
Format: Digit from -100 to 100 
   -100 is the slowest pace available in the system 
   0 is no-change status (The SCO uses its defaults.  SCO moves at its normal speed) 
   100 is maximum pace available in the system. 

    Initialization: If supported by the LMS, this element should be initialized to “0”.  It is 
the responsibility of the SCO to set this value.   If an LMSGetValue() is requested 
before the SCO has set this value, then the LMS should return an empty string (“”) 
    
    LMSGetValue(): Returns the current value stored by the LMS. 
    Error Code: 401 - Not implemented error.  If element is not supported an empty 

string is returned and an error code is set to indicate that the element is 
not supported.     

     
    LMSSetValue() : Sets the LMS data item to the value passed in as a parameter 
    Error Code: 405 – Incorrect Data Type: If the element is supported and a request 

attempts to invoke an LMSSetValue() with a value that is not of the 
correct data type. 

                      401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

 

“-100” 
“0” 
“3” 

 
SCO Usage Example: 
LMSSetValue(“cmi.student_preference.speed”, “-100”); 
var speedValue = LMSGetValue(“cmi.student_preference.speed”); 

 
    

 
Supported API calls: 

LMSGetValue() 
LMSSetValue() 

 

 
Definition: In a SCO designed for audio, it may be possible to turn off the audio, and 
view the audio content in a text window.  Or it may be possible to leave the audio on, 
and request that the text be presented simultaneously with the audio.  Or it may be 
possible to make the text disappear so that only the audio and the screen graphics are 

cmi.student_preference.text 

3-46 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
LMS Mandatory: No 
 
Data Type: CMISInteger 
 
SCO Accessibility: 

Read  
    0 : no change in status. Use default 
    1 : text is on screen, shown to student 

Write 
 

available.  This element identifies whether the audio text appears in the SCO. 
 
Usage: Used by the SCO to both set and obtain from the LMS text preferences of the 
student. 
 
Format: One of three digits: 
   -1 : text is off, not shown 

 
LMS Behavior:  
    Initialization: If supported by the LMS, this element should be initialized to “0”.  It is 
the responsibility of the SCO to set this value.  If an LMSGetValue() is requested before 
the SCO has set this value, then the LMS should return an empty string (“”) 
    
    LMSGetValue(): Returns the current value stored by the LMS. 
    Error Code: 401 - Not implemented error.  If element is not supported an empty 

string is returned and an error code is set to indicate that the element is 
not supported.     

     
    LMSSetValue() : Sets the LMS data item to the value passed in as a parameter 
    Error Code: 405 – Incorrect Data Type: If the element is supported and a request 

attempts to invoke an LMSSetValue() with a value that is not of the 
correct data type. 

                      401 - Not implemented error. If this element is not supported an error 
code is set to 401 by  the LMS to indicate that the element is not 
supported. 

Example Return/Set Values:  
"0" 
"-1" 
"1" 

 
SCO Usage Example: 
LMSSetValue(“cmi.student_preference.text”, “-1”); 
var textValue = LMSGetValue(“cmi.student_preference.text”); 
 

cmi.interactions 
In this context, an interaction is a recognized and recordable input or group of inputs from the student to the computer.  
All of the items in this group are related to a recognized and recordable input from the student. The category collects 
detailed information on each interaction measured as the student takes a SCO. 
 
Children of cmi.interactions: 
 
id, objectives, time, type, correct_response, weighting, student_response, result, latency 
 

cmi.interactions._children 
 
Supported API calls: 
   LMSGetValue() 
 
LMS Mandatory: No 
 

 
SCO Accessibility: 
   Read Only 

 
Definition: The children keyword is used to determine all of the elements in the 
cmi.interactions category that are supported by the LMS.  If an element has no children, 
but is supported, an empty string is returned.  If an element is not supported, there is no 
return.  A subsequent request for last error can verify that the element is not supported.  
 
Usage: Used to determine which elements are supported by the LMS. 
 
Format: The return value is a comma separated list of all the element names in the 
cmi.interactions category that are supported by the LMS.  Identifies what detailed 
information can be collected on each interaction measured as the student takes a SCO. 
 
LMS Behavior:  
    Initialization: The set of supported children for this group.  So that on an 
LMSGetValue() request, the appropriate list of supported children is returned 
 
    LMSGetValue(): Returns a comma separated list of supported elements 
    Example API call: LMSGetValue("cmi.interactions._children") 
    Example Return Values:           
       “id,time,type” 
       "id,time,type,correct_responses,student_response"  
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 

Data Type: CMIString255 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-47 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

is not supported.  
     
    LMSSetValue(): LMS should set an error code according to the following: 
    Error Code: 402 - Invalid set value, element is a keyword.   If the element is 

supported by the LMS and a request attempts to invoke an 
LMSSetValue() on this element, then the LMS should set the error 
code to 402. 

                        401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported. 

 
SCO Usage Example: 
SCO could use this element to determine which elements are supported by the LMS 
 
var intChildren = LMSGetValue("cmi.interactions._children") 
if (intChildren.indexOf(“id”) != -1) 
{ 
    // Set the Interaction id 
} 

cmi.interactions._count 
 
Supported API calls: 
   LMSGetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIInteger 
 
SCO Accessibility: 
   Read Only 

 
Definition: The _count keyword is used to determine the current number of records in the 
cmi.interactions list.  The total number of entries is returned.  If the SCO does not know 
the count of the cmi.interactions records, it can begin the current student count with 0.  
This would overwrite any information about interactions currently stored in the first index 
position.  Overwriting or appending is a decision that is made by the SCO author when 
he/she creates the SCO. 
 
Usage: Used to determine the number of interactions stored by the LMS.  SCOs could 
use this number to determine which interaction record to set.  If "3'" is returned then the 
SCO knows that records 0-2 are occupied and the next available index is “3”.  
 

 
LMS Behavior:  
    Initialization: LMS is responsible for initializing this to 0 on initial launch of a SCO, no 

interaction data has been inserted by the SCO. 
 
    LMSGetValue(): Returns the total number of interaction entries stored by the LMS 

    Example Return Values:           
       “0” 
       "4"  
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported.  

    LMSSetValue(): LMS should set an error code according to the following: 
    Error Code: 402 - Invalid set value, element is a keyword.   If the element is 

supported by the LMS and a request attempts to invoke an 
LMSSetValue() on this element, then the LMS should set the error 
code to 402. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported.                                 

SCO Usage Example: 
SCO could use the _count element to determine which array index to use later in the 
process 

// get the count of interactions recorded by the LMS  
var totalInteractions = LMSGetValue("cmi.interactions._count") 
 

 
var request = "cmi.interactions." + totalInteractions + ".id" 
 
// Set the Interaction ID 
LMSSetValue(request, "Int_110") 

Format: Returns the value as an integer that indicates the number of items currently in 
an element list or array. 

    Example API call: LMSGetValue("cmi.interactions._count") 

     

 

 

// The value return from the LMS is the total number records 

3-48 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
cmi.interactions.n.id 
 
Supported API calls: 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIIdentifier 
 
SCO Accessibility: 
   Write Only 

 
Definition: Unique identifier for an interaction. 
 
Usage: Used to set a unique interactions id. SCO specific.  
 
Format: Alpha-numeric string. No internal spaces. 
 
LMS Behavior:  
    Initialization: Value is controlled by the SCO. 
 
    LMSGetValue(): LMS should set an error code according to the following and return an 

empty string (""). 
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported. 

                        404 - Element is write only.  If a SCO tries to call LMSGetValue() on this 
element, the LMS should set the error code to 404 and return an 
empty string (""). 

 
    LMSSetValue():Sets the data model element to the supplied value.  Value must match 

the data type for this element.  
    Example API call: LMSSetValue(“cmi.interactions.0.id”,"I_001") 
    Example Set Values: 
       "I_001" 
       "i1" 
    Error Code: 205 – Incorrect Data Type: If an LMSSetValue() is invoked and the value 

to be used to set the element to is not of the correct Data Type. 
                       401 - Not implemented error.  If this element is not supported an error 

code is set to indicate that the element is not supported. 
     
SCO Usage Example: 
// Set the first interactions id 
LMSSetValue("cmi.interactions.0.id","I_001"); 
 

cmi.interactions.n.objectives 
cmi.interactions.n.objectives._count 
 
Supported API calls: 
   LMSGetValue() 
 
LMS Mandatory: No 

Data Type: CMIInteger 
 
SCO Accessibility: 
   Read Only 

 
Definition: The _count keyword is used to determine the current number of records in the 
cmi.interactions objective id list.  The total number of entries is returned.  If the SCO does 
not know the count of the cmi.interactions.n.objectives records, it can begin the current 
student count with 0.  This would overwrite any information about objective ids currently 
stored in the first index position.  Overwriting or appending is a decision that is made by 
the SCO author when he/she creates the SCO. 
 
Usage: Used to determine the number of objective ids stored by the LMS for a given 
interaction.  SCOs could use this number to determine which objective id record to set.  If 
"3'" is returned then the SCO knows that records 0-2 are occupied and the next available 
index is “3”.  
 
Format: Returns the value as an integer that indicates the number of items currently in 
an element list or array. 
 
LMS Behavior:  
    Initialization: LMS is responsible for initializing this to 0 on initial launch of a SCO, no 

objective id data has been inserted by the SCO. 
 
    LMSGetValue(): Returns the total number of objective id entries stored by the LMS for 
a given interaction. 
    Example API call: LMSGetValue("cmi.interactions.3.objectives._count") 
    Example Return Values:           
       “0” 
       "4"  
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported.  

     

 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-49 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

    LMSSetValue(): LMS should set an error code according to the following: 
    Error Code: 402 - Invalid set value, element is a keyword.   If the element is 

supported by the LMS and a request attempts to invoke an 
LMSSetValue() on this element, then the LMS should set the error 
code to 402. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported.                                 

 
SCO Usage Example: 
SCO could use the _count element to determine which array index to use later in the 
process 
 
// get the count of objective ids recorded by the LMS for a given interaction  
var totalIDs = LMSGetValue("cmi.interactions.0.objectives_count") 
 
// The value return from the LMS is the total number records 
 
var request = "cmi.interactions.0.objectives." + totalID + ".id" 

// Set the Interactions Objective ID 
LMSSetValue(request, “ObjID-110") 
 

cmi.interactions.n.objectives.n.id 
 
Supported API calls: 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIIdentifier 
 
SCO Accessibility: 
   Write Only 

 
Definition: Developer created identifier for an objective. 
 
Usage: Used to identify the objective that the interaction is for. 
 
Format: Alpha-numeric string. No internal spaces. 
 
LMS Behavior:  
    Initialization: Value is controlled by the SCO. 
 
    LMSGetValue(): LMS should set an error code according to the following and return an 

empty string (""). 
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported. 

                        404 - Element is write only.  If a SCO tries to call LMSGetValue() on this 
element, the LMS should set the error code to 404 and return an 
empty string (""). 

 
    LMSSetValue(): Sets the data model element to the supplied value.  Value must match 

the data type for this element.     
    Example API call: LMSSetValue(“cmi.interactions.0.objectives.0.id","A1333") 
    Example Set Values: 
       "A1333" 
       "Obj123" 
    Error Code: 205 – Incorrect Data Type: If an LMSSetValue() is invoked and the value 

to be used to set the element to is not of the correct Data Type. 
                       401 - Not implemented error.  If this element is not supported an error 

code is set to indicate that the element is not supported. 
     
SCO Usage Example: 
// set the objective ID for the given interaction 
LMSSetValue("cmi.interactions.0.objectives.0.id","A1333") 
 

 
Supported API calls: 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: CMITime 
 
SCO Accessibility: 
   Write Only 

 
Definition: Identification of when the student interaction was completed. 
 
Usage: Used as a timestamp for the interaction. 
 
Format: A chronological point in a 24 hour clock.  Identified in hours, minutes and 
seconds in the format: HH:MM:SS.S  
Hours and minutes shall contain exactly 2 digits.  Seconds shall contain 2 digits, with an 
optional decimal point and 1 or 2 additional digits (i.e. 34.45) 
 

 

cmi.interactions.n.time 

3-50 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

LMS Behavior:  
    Initialization: Value is controlled by the SCO. 
 
    LMSGetValue(): LMS should set an error code according to the following and return an 

empty string (""). 
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported. 

                        404 - Element is write only.  If a SCO tries to call LMSGetValue() on this 
element, the LMS should set the error code to 404 and return an 
empty string (""). 

 
    LMSSetValue():Sets the data model element to the supplied value.  Value must match 

the data type for this element.  
    Example API call: LMSSetValue(“cmi.interactions.0.time","12:33:35.5") 
    Example Set Values: 
       "12:33:35.5" 
       "22:30:40" 
    Error Code: 205 – Incorrect Data Type: If an LMSSetValue() is invoked and the value 

to be used to set the element to is not of the correct Data Type. 
                       401 - Not implemented error.  If this element is not supported an error 

code is set to indicate that the element is not supported. 
     
SCO Usage Example: 
// Set the Interactions time 
LMSSetValue("cmi.interactions.0.time","12:33:35.5") 
 

cmi.interactions.n.type 
 
Supported API calls: 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: 

CMIVocabulary 
(Interaction) 

"true-false" 
"choice" 
"fill-in" 
"matching" 
"performance" 
"sequencing" 
"likert" 
"numeric" 
 
SCO Accessibility: 
   Write Only 

 
Definition: Indication of which category of interaction is recorded.  The type of interaction 
determines how the interaction response should be interpreted.  Seven possible question 
types are defined below.  They are not meant to be limiting.  There are other types of 
questions.  However, if one of these seven types is used, these are the identifiers that 
match those types. 
 
Usage: To indicate the type of interaction that is taking place. 
 
Format: A set vocabulary phrase.  Eight possible vocabulary values: 

   
LMS Behavior:  
    Initialization: Value is controlled by the SCO. 
 
    LMSGetValue(): LMS should set an error code according to the following and return an 

empty string (""). 
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported. 

                        404 - Element is write only. If a SCO tries to call LMSGetValue() on this 

• "true-false": A question with only two possible responses. 
• "choice": A question with a limited number of predefined responses from 

which the student may select.  Each response is numbered or lettered.  One or 
more responses may be correct.  

• "fill-in": A question with a simple one or few-word answer.  The 
answer/response is not predefined, but must be created by the student (as 
opposed to selected). 

• "matching": A question with one or two sets of items.  Two or more of the 
members of these sets are related.  Answering the question requires finding 
and matching related members. 

• "performance": A performance question is in some ways similar to a multiple 
choice question.  However, instead of selecting a written answer, the student 
must perform a task or action. 

• "sequencing": In a sequencing question, the student is required to identify a 
logical order for the members of a list.  

• "likert": A likert question offers the student a group of alternatives on a 
continuum.  The response is generally based on the student's opinion or 
attitude. 

• "numeric": Simple number with or without a decimal point required answering 
the question.  Correct answer may be a single number within a range of 
numbers. 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-51 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

element, the LMS should set the error code to 404 and return an 
empty string (""). 

 
    LMSSetValue():Sets the data model element to the supplied value.  Value must match 

the data type for this element.  
    Example API call: LMSSetValue(“cmi.interactions.0.type","likert") 
    Example Set Values: 
       "likert" 
       "true-false" 
       "performance" 
    Error Code: 205 – Incorrect Data Type: If an LMSSetValue() is invoked and the value 

to be used to set the element to is not of the correct Data Type. 
                       401 - Not implemented error.  If this element is not supported an error 

code is set to indicate that the element is not supported. 
     
SCO Usage Example: 
// set the interactions type 
LMSSetValue("cmi.interactions.0.type","choice"); 

cmi.interactions.n.correct_responses 
cmi.interactions.n.correct_responses._count 
 
Supported API calls: 
   LMSGetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIInteger 
 
SCO Accessibility: 
   Read Only 

 
Definition: The _count keyword is used to determine the current number of records in the 
cmi.interactions correct responses list.  The total number of entries is returned.  If the 
SCO does not know the count of the cmi.interactions.n.correct_responses records, it can 
begin the current count with 0.  This would overwrite any information about correct 
responses currently stored in the first index position.  Overwriting or appending is a 
decision that is made by the SCO author when he/she creates the SCO. 
 
Usage: Used to determine the number of correct_responses stored by the LMS for a 
given interaction.  SCOs could use this number to determine which correct_responses 
pattern record to set.  If "3'" is returned then the SCO knows that records 0-2 are 
occupied and the next available index is “3”.  
 
Format: Returns the value as an integer that indicates the number of items currently in 
an element list or array. 
 
LMS Behavior:  

 
    LMSGetValue(): Returns the total number of correct_responses pattern entries stored 
by the LMS for a given interaction. 
    Example API call: LMSGetValue("cmi.interactions.0.correct_responses._count") 
    Example Return Values:           
       “0” 
       "4"  
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported.  

     
    LMSSetValue(): LMS should set an error code according to the following: 
    Error Code: 402 - Invalid set value, element is a keyword.   If the element is 

supported by the LMS and a request attempts to invoke an 
LMSSetValue() on this element, then the LMS should set the error 
code to 402. 

                       401 - Not implemented error. If this element is not supported an error 
code is set to 401 by the LMS to indicate that the element is not 
supported.                                 

SCO Usage Example: 
SCO could use the _count element to determine which array index to use later in the 
process 
 
// get the count of objective ids recorded by the LMS for a given interaction  
var totalPattern = LMSGetValue("cmi.interactions.0.correct_responses._count") 
 
// The value return from the LMS is the total number records 
 
var request = "cmi.interactions.0.correct_responses." + totalPattern + ".pattern" 

    Initialization: LMS is responsible for initializing this to 0 on initial launch of a SCO, no 
correct_responses pattern data has been inserted by the SCO. 

 

3-52 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
// Set the Interactions correct_responses pattern 
LMSSetValue(request, “t") 
 

cmi.interactions.n.correct_responses.n.pattern 
 
Supported API calls: 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: 

CMIFeedback 
 
SCO Accessibility: 
   Write Only 

 
Definition: Description of possible student responses to the interaction.  There may be 
more than one correct response, and some responses may be more correct than others. 
 
Usage: This is the correct response to the interaction provided by the SCO.  
 
Format:  
If the cmi.interactions.n.type is:  
true-false: Then the pattern is a single character or numeral. Legal characters are 0,1,t, 

and f. 0 corresponds to false.  If the response is a complete word (i.e. "true") 
only the first letter is significant. 

choice: Then the pattern is one or more characters separated by a comma.  Integers (0-
9), letters (a - z) or both may be used.  Each possible response is limited to a 
single character.  If there are more than 26 possibilities, then a performance 
type response must be used. 

fill-in: Then the pattern is an alphanumeric string.  Spaces are significant, after the first 
printable character. 

numeric: Then the pattern is a single number.  The number may or may not have a 
decimal. 

likert: There is no incorrect response for a likert question.  Field may be left blank. 
matching: Then the pattern is pairs of identifiers separated by a period.  Each matching 

possibility consists of a source and a target.   
performance: Then the pattern is an alpha-numeric field limited to 255 characters.  
sequencing: Then the pattern is elements identified in any order.  The final positioning of 

the elements is used to determine correctness, not the order in which they were 
sequenced. 

 
LMS Behavior:  
    Initialization: Value is controlled by the SCO. 
 
    LMSGetValue(): LMS should set an error code according to the following and return an 

empty string (""). 
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported. 

                       404 - Element is write only.  If a SCO tries to call LMSGetValue() on this 
element, the LMS should set the error code to 404 and return an 
empty string (""). 

 
    LMSSetValue(): Sets the data model element to the supplied value.  Value must match 

the data type for this element. 
    Example API call: If the cmi.interactions.n.type is matching then  
                                     
LMSSetValue(“cmi.interactions.0.correct_responses.0.pattern","1.c,2.b,3.a,4.d") 
    Example Set Values: 
       "1.c,2.b,3.a,4.d" 
       "t" 
    Error Code: 205 – Incorrect Data Type: If an LMSSetValue() is invoked and the value 

to be used to set the element to is not of the correct Data Type. 
                       401 - Not implemented error.  If this element is not supported an error 

code is set to indicate that the element is not supported. 
     
SCO Usage Example: 
// set the response pattern  
// Question type is a true-false question 
LMSSetValue("cmi.interactions.0.correct_responses.0.pattern","t"); 

cmi.interactions.n.weighting 
 
Supported API calls: 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: CMIDecimal 

 
Definition: Interactions vary in importance.  The weighting is a factor which is used to 
identify the relative importance of one interaction compared to another.  For instance, if 
the first interaction has a weight of 15 and the second interaction has a weight of 25, then 
any combined score that reflects weighting would be more influenced by the second 
interaction.   
If all interactions are equal in importance, then each interaction has the same weight. 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-53 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
SCO Accessibility: 
   Write Only 
 
 

 
A weight of 0 indicates that the interaction should not be counted in the weighted final 
score. 
 
Usage: An interaction may have a weight, and similarly, individual actions or responses 
inside a complex interaction may have a weight. 
 
Format: A single floating point number.  The decimal point is optional and does not have 
to appear in every weighting. 
 
LMS Behavior:  
    Initialization: Value is controlled by the SCO. 
 
    LMSGetValue(): LMS should set an error code according to the following and return an 

empty string (""). 
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported. 

                        404 - Element is write only.  If a SCO tries to call LMSGetValue() on this 
element, the LMS should set the error code to 404 and return an 
empty string (""). 

 
    LMSSetValue(): Sets the data model element to the supplied value.  Value must match 

the data type for this element.      
    Example API call: LMSSetValue(“cmi.interactions.0.weighting","0.66") 
    Example Set Values: 
       "0.66" 
       "0" 
    Error Code: 205 – Incorrect Data Type: If an LMSSetValue() is invoked and the value 

to be used to set the element to is not of the correct Data Type. 
                       401 - Not implemented error.  If this element is not supported an error 

code is set to indicate that the element is not supported. 
     
SCO Usage Example: 
// Set the weighting for the interaction 
LMSSetValue("cmi.interactions.0.weighting","0"); 
 

cmi.interactions.n.student_response 
 
Supported API calls 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: 

CMIFeedback 
 
SCO Accessibility: 
   Write Only 

 
Definition: Description of possible responses to the interaction.  There may be more than 
one correct response, and some responses may be more correct than others. 
 
Usage: This is the actual student response to the interaction. This value then can be 
compared with the cmi.interactions.n.correct_responses.n.pattern. 
 
Format:  
If the cmi.interactions.n.type is:  
true-false: Then a single character or numeral. Legal characters are 0,1,t and f. 0 

corresponds to false.  If the response is a complete word (i.e. "true") only the 
first letter is significant. 

choice: Then one or more characters separated by a comma.  Integers (0-9), letters (a - 
z) or both may be used.  Each possible response is limited to a single 
character.  If there are more than 26 possibilities, then a performance type 
response must be used. 

fill-in: Then an alphanumeric string.  Spaces are significant, after the first printable 
character. 

numeric: Then a single number.  The number may or may not have a decimal. 
likert: Then there is no incorrect response for a likert question.  Field may be left blank. 
matching: Then pairs of identifiers separated by a period.  Each matching possibility 

consists of a source and a target.   
performance: Then alpha-numeric field limited to 255 characters.  
sequencing: Then the elements may be identified in any order.  The final positioning of 

the elements is used to determine correctness, not the order in which they were 
sequenced. 

 
LMS Behavior:  
    Initialization: Value is controlled by the SCO. 
 
    LMSGetValue(): LMS should set an error code according to the following and return an 

3-54 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

empty string (""). 
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported. 

                        404 - Element is write only.  If a SCO tries to call LMSGetValue() on this 
element, the LMS should set the error code to 404 and return an 
empty string (""). 

 
    LMSSetValue(): Sets the data model element to the supplied value.  Value must match 

the data type for this element.  
    Example API call: If the cmi.interactions.n.type is matching then  
                                     
LMSSetValue(“cmi.interactions.0.student_response","1.c,2.b,3.a,4.d") 
    Example Set Values: 
       "t" 
       "1.c,2.b,3.c,4.d" 
    Error Code: 205 – Incorrect Data Type: If an LMSSetValue() is invoked and the value 

to be used to set the element to is not of the correct Data Type. 
                       401 - Not implemented error.  If this element is not supported an error 

code is set to indicate that the element is not supported. 
     
SCO Usage Example:  
// set the students response 
// Student response was to a true-false 
LMSSetValue("cmi.interactions.0.student_response","f");  

cmi.interactions.n.result 
 
Supported API calls: 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: 

CMIVocabulary 
(Result) 

"correct" 
"wrong" 
"unanticipated" 
"neutral" 
"x.x" (CMIDecimal) 
 
SCO Accessibility: 
   Write Only 

 
Definition: How the system judges the described response. 
 
Usage: This is the actual result from the student_response.  
 
Format: A set vocabulary phrase.  Five possible vocabulary values: 

 
LMS Behavior:  
    Initialization: Value is controlled by the SCO. 
 
    LMSGetValue(): LMS should set an error code according to the following and return an 

empty string ("").     
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported. 

                        404 - Element is write only.  If a SCO tries to call LMSGetValue() on this 
element, the LMS should set the error code to 404 and return an 
empty string (""). 

 
    LMSSetValue(): Sets the data model element to the supplied value.  Value must match 

the data type for this element. 
    Example API call:  
                       LMSSetValue("cmi.interactions.0.result","correct") 
    Example Set Values: 
       "correct" 
       "95.5" 
       "unanticipated" 
    Error Code: 205 – Incorrect Data Type: If an LMSSetValue() is invoked and the value 

to be used to set the element to is not of the correct Data Type. 
                       401 - Not implemented error.  If this element is not supported an error 

code is set to indicate that the element is not supported. 
     
SCO Usage Example: 
// set the result for the question 
LMSSetValue("cmi.interactions.0.result","correct"); 
 

cmi.interactions.n.latency 

• "correct" 
• "wrong" 
• "unanticipated" 
• "neutral" 
• "x.x" (CMIDecimal) 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-55 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
Supported API calls: 
   LMSSetValue() 
 
LMS Mandatory: No 
 
Data Type: 

CMITimespan 
 
SCO Accessibility: 
   Write Only 

 
Definition: The time from the presentation of the stimulus to the completion of the 
measurable response. 
 
Usage: If latency is recorded, there can be a latency figure for each response. 
 
Format: Hours, minutes and seconds separated by a colon. HHHH:MM:SS.SS 
Hours has a minimum of 2 digits and a maximum of 4 digits.  Minutes shall consist of 
exactly 2 digits.  Seconds shall contain 2 digits, with an optional decimal point and 1 or 2 
additional digits. (i.e. 34.45).   
 
LMS Behavior:  
    Initialization: Value is controlled by the SCO. 
 
    LMSGetValue(): LMS should set an error code according to the following and return an 

empty string ("").      
    Error Code: 401 - Not implemented error.  If this element is not supported an empty 

string is returned and an error code is set to indicate that the element 
is not supported. 

                        404 - Element is write only.  If a SCO tries to call LMSGetValue() on this 
element, the LMS should set the error code to 404 and return an 
empty string (""). 

 
    LMSSetValue():Sets the data model element to the supplied value.  Value must match 

the data type for this element.  
    Example API call:  
                       LMSSetValue("cmi.interactions.0.latency","00:29:00") 
    Example Set Values: 
       "00:29:00" 
       "1234:44:30" 
    Error Code: 205 – Incorrect Data Type: If an LMSSetValue() is invoked and the value 

to be used to set the element to is not of the correct Data Type. 
                       401 - Not implemented error.  If this element is not supported an error 

code is set to indicate that the element is not supported. 
     
SCO Usage Example: 
// set the latency for the interaction 
LMSSetValue("cmi.interactions.0.latency","00:20:00"); 
 

 

3.4.5. Data Types and Controlled Vocabulary 

There exists a data type definition for each element in the AICC CMI Data Model4.  The 
following sections define the specifics of each data type specified for the data model 
elements.  These definitions further define how the API and data model must be 
implemented. 

The following definitions are for the data types used to describe the format of each data 
element.  All of the data types have the first three characters of  “CMI” to clearly indicate 
that they are data types that may be unique to the AICC CMI Data Model4. 

CMIBlank An empty string (""). 
 

CMIBoolean A vocabulary of two words.  (“true” or “false”). 
 

CMIDecimal A number which may have a decimal point.  If not preceded by a minus 
sign, the number is presumed to be positive.  Examples are "2","2.2" 
and “-2.2). 
 

3-56 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

CMIFeedback A structured description of a student response in an interaction.  The 
structure and contents of the feedback depends upon the type of 
interaction.  The currently defined interactions are: 
true-false: 
Feedback is one of the following single characters: “0”,”1”,”t”, or “f”. 
choice: 
Feedback is one or more single characters separated by a comma.  
Legal characters are “0” to “9” and “a” to “z”.  If all the characters must 
be chosen to assume the feedback is correct, then the comma-
separated list must be surrounded by curly brackets: { } 
fill-in: 
Any alpha-numeric string up to 255 characters in length.  After the first 
letter spaces are significant. 
numeric: 
CMIDecimal 
likert: 
Single character.  Legal characters are 0 to 9 and a to z. 
matching: 
One or more pairs of identifiers.  Each identifier is a single letter or 
number (0 to 9 and a to z).  The identifiers in a pair are separated by a 
period.  Commas separate the pairs.  If all pairs must be matched 
correctly to consider the interaction correct, then the comma separated 
list of pairs are surrounded by curly brackets: { } 
performance: 
This is a very flexible format.  Essentially an alphanumeric string of 255 
characters or less. 
sequencing: 
A series of single characters separated by commas.  Legal characters 
are 0 to 9 and a to z.  The order of the characters determines the 
correctness of the feedback. 
 

CMIIdentifier An alphanumeric group of characters with no white space or unprintable 
characters in it.  Maximum of 255 characters. 
 

CMIInteger An integer number from 0 to 65536. 
 

CMISInteger A signed integer number from –32768 to +32768. 
 

CMIString255 A set of ASCII characters with a maximum length of 255 characters. 
 

CMIString4096 A set of ASCII characters with a maximum length of 4096 characters. 
 

CMITime A chronological point in a 24 hour clock.  Identified in hours, minutes 
and seconds in the format: HH:MM:SS.SS 
Hours and minutes shall contain exactly 2 digits.  Seconds shall contain 
2 digits, with an optional decimal point and 1 or 2 additional digits (i.e. 
34.45). 
 

CMITimespan A length of time in hours, minutes and seconds shown in the following 
numerical format: HHHH:MM:SS.SS 
Hours has a minimum of 2 digits and a maximum of 4 digits.  Minutes 
shall consist of exactly 2 digits.  Seconds shall contain 2 digits, with an 
optional decimal point and 1 or 2 additional digits. (i.e. 34.45). 
 

Sharable Content Object Reference Model (SCORM) Version 1.1 3-57 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

CMIVocabulary Used to attach specific vocabularies within contexts in a schema.  
Vocabulary words must be complete and exact matches to those below.  
Single letters and abbreviations may not be used in API communication.  
See the table below for the valid list of vocabularies. 

 

In addition to data types, some data model elements are defined with bounded 
vocabularies of possible values.  The table below summarizes the vocabulary type and 
values for these elements (from AICC CMI001 Guidelines for Interoperability4). 

 

Vocabulary Type Members of Vocabulary 
Mode 
cmi.core.lesson_mode 

“normal” 
“review” 
“browse” 

Status 
cmi.core.lesson_status 
cmi.objectives.n.status 

“passed” 
“completed” 
“failed” 
“incomplete” 
“browsed” 
“not attempted” 

Exit 
cmi.core.exit 

“time-out” 
“suspend” 
“logout” 
"" - (empty string) 

Credit 
cmi.core.credit 

“credit” 
“no-credit” 

Entry 
cmi.core.entry 

“ab-initio” 
“resume” 
"" - (empty string) 

Interaction 
cmi.interactions.n.type 

“true-false” 
“choice” 
“fill-in” 
“matching” 
"performance" 
"likert" 
"sequencing" 
"unique" 
"numeric" 

Result 
cmi.interactions.n.result 

“correct” 
“wrong” 
“unanticipated” 
“neutral” 
X.X (CMIDecimal) 

Time Limit Action 
cmi.student_data.time_limit_action 

“exit,message” 
“exit,no message” 
“continue,message” 
“continue,no message” 

 

 
 

3-58 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 

4. SECTION IV (Page Number Style) 
SECTION  4    

SCORM Examples 
 

Sharable Content Object Reference Model (SCORM) Version 1.1 4-1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 

4-2 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

4.1. SCORM Examples Overview 

The release of this version of the SCORM includes several samples that illustrate various 
aspects of this document.  They are available at no charge and may be downloaded from 
www.adlnet.org. 

Note that the sample code described in this section will be updated and expanded over 
time.  Be sure to download the most recent version and view each corresponding  
readme.htm (documentation) file for new information.  The samples described in this 
section of the document may have been superseded by newer versions by the time you 
read this. 

You are free to use and modify these samples any way you wish.  If you create new or 
improved samples, please send them back to ADL using mechanisms available at 
www.adlnet.org so others may benefit from what you have learned. 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 4-3 

© 2001 Advanced Distributed Learning. 
All rights reserved. 

http://www.adlnet.org/
http://www.adlnet.org/


 
 

 
 
 
 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 
 

4-4 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

4.2. Sample Run-Time Environment Implementation 
Version 1.1 

The sample Run-time Environment is intended to provide an example implementation of 
the concepts described in Section 3 of this document.  Specifically, this sample was 
developed in order to provide an illustration of the Run-time Environment.  The main 
focus is on the Run-time Environment communication between the LMS and Sharable 
Content Objects (SCOs) using the API mechanism described in Section 3.  The example 
source code is only meant to illustrate one way of implementing the API and data model 
components of an LMS.  It is not, nor is it meant to be, a complete LMS implementation. 

 
 

Figure 4.2a: Sample Run-Time Environment Implementation 
 

Several shortcuts have been taken in the source code: 

• Robust exception and error handling has not been included in this sample code. 

• This sample Run-time Environment supports only a single student and a single 
course with two lessons at this time.  Note that both lessons present the same 
content.  One lesson presents the content only in HTML, the other lesson presents 
the same content in Authorware. 

Sharable Content Object Reference Model (SCORM) Version 1.1 4-5 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

• This sample Run-time Environment does not support importing additional content 
or the processing of a Content Structure Format document. 

• Concurrent access is not supported.  Only one client can be accessing the LMS at 
a time. 

There are a number of possible Web-enabled LMS implementations.  This version of the 
sample Run-time Environment was implemented as a Web-based client/server 
application using HTML, JavaScript, Java Applets and Java Servlets.  Specifically, this 
sample code consists of the following components: 

• Run-time Environment server component: Implemented using Java servlets; 

• Run-time Environment client component: Implemented using Java, HTML and 
JavaScript; and 

• Sample Course: Implemented using HTML, JavaScript and Authorware. 

4.2.1. Sample Run-Time Environment Server Component 

The Run-time Environment server component is implemented using Java servlets and 
HTML.  The servlets respond to requests from the Run-time Environment client 
component and are responsible for CMI data model persistence as well as serving the 
student course menu, the course lesson menu and launching the selected lesson. 

There are five servlets as described below: 

• LMSLoginServlet.java: Provides the ability to validate the student’s login 
credentials and serve the student's course menu. The course menu is an HTML 
page dynamically built by the servlet.  The servlet is expandable to allow for 
future dynamic generation of course menu based on student course registration.  
This servlet receives the HTTP request when the user presses "submit" on the 
LMSLogin form. 

• LMSCourseServlet.java: Provides the ability to serve the Course Lesson menu. 
Like the student course menu, the lesson menu is an HTML page that is 
dynamically built by the servlet.  This servlet is also expandable to allow for 
dynamic lesson menu generation based on a Content Structure Format (CSF) 
XML document in a future release, but does not support the CSF at this time.  
This servlet is called when the student clicks on the course name. 

• LMSLessonServlet.java: Provides the ability to launch the SCOs for the lesson.  
The servlet also handles the sequencing of the SCOs.  In this version the 
sequencing is hard coded and not based on a CSF.  The "LMSLessonServlet" 
serves the appropriate SCO page of the selected lesson to the browser, within the 
Run-time Environment client component framework.  This servlet is called when 
the user navigates through the lesson from one SCO to the next or previous SCO 
in sequential order. 

4-6 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

• LMSCMIServlet.java: Provides a mechanism for communication between the 
Run-time Environment server component and the SCO.  This particular 
implementation is specifically for the CMI data model that is described in the 
SCORM.  Other modules could be created to handle other data models as they 
come into existence.  The "LMSCMIServlet" sends and receives serialized data 
model objects via HTTP to and from the Run-time Environment client component 
(see below).  Data persistence is handled by Java's built-in serialization 
mechanism using a file on the local file system.  No underlying database 
management system is being used at this time. 

• LMSResetDBServlet.java: Provides the ability to delete and reset the persistent 
data that is maintained by the Run-time Environment.  This will reset the run-time 
environment’s persistent file store back to the original state and allows the student 
to restart the “Course” from the beginning.  This is provided as a convenience to 
the user so that the student data does not have to "manually" be deleted at the 
server.  This capability is necessary if you want to use the sample lesson multiple 
times.  Since the Run-time Environment tracks lesson completion and does not 
allow students to take the lesson multiple times, it is necessary to delete the 
student data and reset the state of the sample lesson. 

4.2.2. Sample Run-Time Environment Client Component 

The Run-time Environment client side component consists of a sample user interface 
implemented in HTML and JavaScript and the Run-time Environment API Adapter 
implemented as a Java applet.  The applet is downloaded to the client when the user 
accesses the Run-time Environment main start page through a Web browser.  The API 
Adapter applet provides the communication to the Run-time Environment server 
component for data model element persistence.  The SCOs make calls to the API 
functions from JavaScript.  (See the description of the sample course below for a 
description of how the LMS API function calls are made from the SCOs).  The SCOs do 
not need to know about any of the LMS implementation details. 

The following java source files make up the client side Run-time Environment API 
Adapter implementation: 

• APIAdapterApplet.java: This contains the APIAdapterApplet class that is 
extended from the Java AWT (Advanced Windowing Toolkit) Applet class and 
implements the Run-time Environment API functions (i.e. LMSInitialize, 
LMSFinish, etc.). 

• LMSErrorManager.java: This contains the LMSErrorManager class, which 
encapsulates the error handling capabilities specified for the Run-time 
Environment API.  It maintains the most recent error code and the mapping of 
error codes to the error text and diagnostic information. 

Sharable Content Object Reference Model (SCORM) Version 1.1 4-7 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

ServletProxy.java: This contains the ServletProxy class which encapsulates the 
communication between the Run-time Environment client component API 
Adapter applet and the Run-time Environment server component. 

• 

• ServletWriter.java: This contains the ServletWriter class which provides the low 
level input and output serialized object streaming capability that is used by 
ServletProxy to actually communicate with the servlets via HTTP.  This class was 
downloaded from www.javasoft.com. 

The HTML/JavaScript Sample Run-time Environment User Interface is made up of the 
following HTML files: 

• LMSMain.htm: This is the main page (see #1, LMSMain.htm in figure 4.2.2a 
below) that contains a frameset which in turn contains two frames – a Run-time 
Environment navigation frame (left-side) which loads the LMSFrame.htm (see 
#2, LMSFrame.htm in figure 4.2.2a below) and a content frame.  The content 
frame (right-side) initially contains the start page (see #3, LMSStart.htm in figure 
4.2.2a below).  As the user logs in and selects a course, lesson, etc. the right-side 
frame displays this content.  There are currently no internal checks to prevent the 
user from typing in the URL of one of the other LMS HTML pages prior to 
starting at LMSMain.htm.  If the user attempts to access one of the other pages, 
undetermined Run-time Environment behavior will result. 

 
Figure 4.2.2a:  Sample Run-Time Environment Frames 

 

4-8 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 

http://www.javasoft.com/


 
 

• LMSFrame.htm: This page contains the API Adapter applet.  The API Adapter 
applet has no visual display elements and is therefore invisible to the user.  Note 
that the API Adapter object is exposed to SCOs via the LMSMain.htm page.  The 
SCOs communicate with the Run-time Environment through this API.  This page 
also contains the Run-time Environment login and logout buttons. 

• LMSStart.htm: This page contains a brief textual description of the ADL Sample 
Run-time Environment.  It is initially displayed in the right frame of the 
LMSMain.htm page when the user first accesses the sample Run-time 
Environment. 

• LMSLogin.htm: This page contains an HTML form that prompts the user for a 
username and password.  Currently no checks are performed on the entries on this 
form and the user may proceed simply by clicking the "Submit" button.  By 
submitting this form, the LMSLoginServlet is invoked. 

• LMSResetConfirm.htm: This page displays an "Are You Sure?" message to the 
user when they choose Reset Student from the main Run-time Environment client 
component frame. 

• LMSResetComplete.htm: This page displays a "Reset Complete" message to the 
user when the student data has been deleted. 

 

 

4.2.3. Sample Run-Time Environment Data Model 

The SCORM Run-time Environment Data Model is the only data model that is currently 
used to communicate from the SCOs to the Run-time Environment.  At this time all of 
the data elements are implemented in this sample.  Several classes are included to 
represent the data elements of the CMI model.  These classes are used by both the 
servlets and the API Adapter applet. 

The source for these classes is as follows: 

SCORM Run-time Environment Data Model Categories 

• CMICore.java: Contains the implementation of the cmi.core data model 
elements needed for the SCO to LMS and LMS to SCO communication. 

• CMISuspendData.java: Contains the implementation of the cmi.suspend_data 
data model elements needed for the SCO to LMS and LMS to SCO 
communication. 

• CMILaunchData.java: Contains the implementation of the cmi.launch_data data 
model elements needed for the SCO to LMS and LMS to SCO communication. 

Sharable Content Object Reference Model (SCORM) Version 1.1 4-9 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

• CMIComments.java: Contains the implementation of the cmi.comments data 
model elements needed for the SCO to LMS and LMS to SCO communication. 

• CMICommentsFromLms.java: Contains the implementation of the 
cmi.comments_from_lms data model elements needed for the LMS to SCO 
communication. 

• CMIObjectives.java / CMIObjectiveData.java: Contains the implementation of 
the cmi.objectives data model elements needed for the SCO to LMS and LMS to 
SCO communication. 

• CMIInteractions.java / CMIInteractionData.java: Contains the 
implementation of the cmi.interactions data model elements needed for the SCO 
to LMS and LMS to SCO communication. 

• CMIStudentData.java: Contains the implementation of the cmi.student_data 
data model elements needed for the SCO to LMS and LMS to SCO 
communication. 

• CMIPreferences.java: Contains the implementation of the 
cmi.student_preference data model elements needed for the SCO to LMS and 
LMS to SCO communication. 

 

Support Elements 

• CMIScore.java: Contains an implementation of the Score element used by the 
data model. 

 

SCORM Run-time Environment Data Model Support 

• Element.java: Class used to represent the base element (i.e. cmi.core.student_id). 

• CMICategory.java: Class used to encapsulate commonality between the CMI 
Categories. 

• CMIRequest.java: Class used to represent a Request from a SCO (i.e. 
LMSGetValue(cmi.core.student_id) ). 

• CMITime.java: Contains the implementation of the CMITime data type. 

• DataModelValidator.java: Contains the implementation of a class that parses 
and validates LMSSetValue and LMSGetValue requests. 

• DataModelInterface.java: Class that contains the implementation of the 
interface between the LMS API Adapter and the rest of the data model 
implementation. 

4-10 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

• SCODataManager.java: Class that manages the data model elements for a 
single Sharable Content Object. 

• DMErrorManager.java: Contains the implementation of a Data Model Error 
Manager.  This class manages error state related specifically to data model errors. 

4.2.4. Sample Run-time Environment Debug Indicator 

The DebugIndicator.java is a class that contains a static attribute that is used to indicate to 
other Java classes if Debug is turned on. If debug is turned on, then debug statements will 
be displayed.  Debug information from the Run-time Environment server side will be 
displayed in the Web server console window.  Debug information from the Run-time 
Environment client side API Adapter will be printed to the Java Runtime Environment 
(JRE 1.3 recommended) Java Console if running in Microsoft Internet Explorer, or to the 
Netscape Java Console if running in Netscape Navigator.  The DebugIndicator can be set 
to off to stop debug information from being sent to the consoles (this may be done to 
speed up the Sample Run-time Environment). However, this requires recompilation of 
the source code. 

 
Figure 4.2.4a: Sample Run-Time Environment Console Messages 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 4-11 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

4.2.5. Sample Run-Time Environment Sample Course 

The course provided with this sample Run-time Environment contains two lessons.  Both 
lessons contain the same content.  They are designed as simple "page turner" lessons 
consisting of seven SCOs each.  Implementations of the two lessons differ: one is written 
in HTML and JavaScript and the other is written using Authorware 5.1 and JavaScript.  
The lessons are not meant to serve as examples of instructionally sound learning content, 
but rather as an example of how to communicate data between the Run-time Environment 
and the SCOs using the API. 

Both lesson implementations make use of two JavaScript "include" files called 
APIWrapper.js and SCOFunctions.js.  The APIWrapper.js file contains a set of "API 
wrapper" functions that encapsulate the functionality that a SCO might use to find and 
communicate with the LMS Run-time Environment via the API.  The SCOFunctions.js 
file contains JavaScript navigation functions used by all of the SCO HTML pages.  It is 
included at run-time in each of the SCO HTML pages.  (Something similar to this might 
be provided by authoring tools to encapsulate general functionality commonly built into 
all of the SCOs authored by that particular tool.) 

The API wrapper does not implement the API functions, but rather encapsulates the logic 
needed to: 

• Find the API in the Run-time Environment client window (frame) hierarchy; 

• Call the desired API function; and 

• Handle errors that might be generated by the call to the API function. 

Both implementations of the lesson are written using the API wrapper, thus providing a 
level of abstraction above the actual implementation of the API and hiding the 
functionality of the communication between the client and the server. 

The SCOs that comprise the HTML implementation of Lesson 01, Lesson 03 and Lesson 
04 consist of the following files: 

1. scoXX.htm 

The SCOs that comprise the Authorware implementation of Lesson 02 consist of the 
following files: 

1. scoXX.htm files correspond to each SCO and embed a tag to launch the 
Authorware scoXX.aam files 

2. scoXX.aam files are Authorware files (i.e. the course content) 

3. scXX.aas files are Authorware files, referenced via the scoXX.aam files 

4. scoXX.a5p files are Authorware source files.  These can be viewed using 
Authorware 5.1 

4-12 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

5. scoXX.a5r files are Authorware files which are built by the Authorware package 
function for use with the Web Packaging tool provided with Authorware 

Note: The naming of the above files has adopted the following style: SCO stands for 
Sharable Content Object and XX stands for a number corresponding to the order in which 
the Run-time Environment has been "hard coded" to order the SCOs.  This number 
ranges from 01 through 07. 

4.2.6. Mapping Sample Run-Time Environment Example Code 
to the SCORM 

Figure 4.2.6a  relates the source code files contained in the Sample Run-time 
Environment to the components of the system architecture that is described in Section 
3.1. 

Learning Management System (LMS)

Server Side

Client Side

Data Model
Actual data sent 
back and forth 
between SCO 
and LMS

API (Communications
Link between SCO 
and LMS)

Launch
(Starts SCO)

JavaScriptJavaScript

Browser

SCO

API 
Adapter

API 
Adapter

LMS
Server
LMS

Server

Sample Run-time 
Environment

LMSLoginServlet.java
LMSCourseServlet.java
LMSLessonServlet.java
LMSCMIServlet.java
LMSResetDBServlet.java

Sample Run-time 
Environment

APIWrapper.js
SCOFunctions.js
sco01 – sco07.htm

(both straight html and
authorware embedded in html)

Sample Run-time 
Environment

APIAdapterApplet.java
ServletProxy.java
ServletWriter.java
LMSErrorManager.java

Sample Run-time 
Environment

LMSMain.htm
LMSFrame.htm
LMSLogin.htm
LMSStart.htm
LMSResetComplete.htm
LMSResetConfirm.htm

Sample Run-time 
Environment

CMICore.java
CMIStudentData.java

.

.

.

Figure 4.2.6a: Mapping Sample Run-Time Environment Code to the SCORM 
 

Sharable Content Object Reference Model (SCORM) Version 1.1 4-13 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

4.2.7. APIWrapper.js Example Source Code 

The following JavaScript code fragment is from APIWrapper.js in the SCORM Sample 
Run-time Environment.  This code is used by the SCOs on the client side to locate the 
API and to call the API functions that are implemented by the LMS’s API Adapter. 

 
/******************************************************************************* 
** 
** Function: doLMSInitialize() 
** Inputs: None 
** Return: CMIBoolean true if the initialization was successful, or 
**               CMIBoolean false if the initialization failed. 
** 
** Description: 
** Initialize communication with LMS by calling the LMSInitialize 
** function which will be implemented by the LMS. 
** 
*******************************************************************************/ 
function doLMSInitialize() 
{ 
   var api = getAPIHandle(); 
   if (api == null) 
   { 
      alert("Unable to locate the LMS's API Implementation.\nLMSInitialize was not 
successful."); 
      return "false"; 
   } 
 
   var result = api.LMSInitialize(""); 
 
   if (result.toString() != "true") 
   { 
      var err = ErrorHandler(); 
   } 
 
   return result.toString(); 
} 
 
 
/******************************************************************************* 
** 
** Function doLMSFinish() 
** Inputs: None 
** Return: CMIBoolean true if successful 
**          CMIBoolean false if failed. 
** 
** Description: 
** Close communication with LMS by calling the LMSFinish 
** function which will be implemented by the LMS 
** 
*******************************************************************************/ 
function doLMSFinish() 
{ 
   var api = getAPIHandle(); 
   if (api == null) 
   { 
      alert("Unable to locate the LMS's API Implementation.\nLMSFinish was not 
successful."); 
      return "false"; 
   } 
   else 
   { 
      // call the LMSFinish function that should be implemented by the API 
 
      var result = api.LMSFinish(""); 
      if (result.toString() != "true") 
      { 
         var err = ErrorHandler(); 
      } 
 
   } 
 
   return result.toString(); 
} 

4-14 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
function doLMSGetValue(name) 
{ ... } 
function doLMSSetValue(name, value)  
{ ... } 
function doLMSCommit() 
{ ... }  
function doLMSGetLastError()  
{ ... } 
function doLMSGetErrorString(errorCode)  
{ ... }    
function doLMSGetDiagnostic(errorCode)  
{ ... } 
 
 
/****************************************************************************** 
** 
** Function getAPIHandle() 
** Inputs: None 
** Return: value contained by APIHandle 
** 
** Description: 
** Returns the handle to API object if it was previously set, 
** otherwise it returns null 
** 
*******************************************************************************/ 
function getAPIHandle() 
{ 
   if (apiHandle == null) 
   { 
      apiHandle = getAPI(); 
   } 
 
   return apiHandle; 
} 
 
 
/******************************************************************************* 
** 
** Function findAPI(win) 
** Inputs: win - a Window Object 
** Return: If an API object is found, it's returned, otherwise null is returned 
** 
** Description: 
** This function looks for an object named API in parent and opener windows 
** 
*******************************************************************************/ 
var findAPITries = 0; 
function findAPI(win) 
{ 
    
   while ((win.API == null) && (win.parent != null) && (win.parent != win)) 
   { 
      findAPITries ++; 
      // Note: 7 is an arbitrary number, but should be more than sufficient 
      if (findAPITries > 7)  
      { 
         alert("Error finding API -- too deeply nested."); 
         return null; 
      } 
      win = win.parent; 
 
   } 
   return win.API; 
} 
 
 
/******************************************************************************* 
** 
** Function getAPI() 
** Inputs: none 
** Return: If an API object is found, it's returned, otherwise null is returned 
** 
** Description: 
** This function looks for an object named API, first in the current window's  
** frame hierarchy and then, if necessary, in the current window's opener window 
** hierarchy (if there is an opener window). 
** 
*******************************************************************************/ 
function getAPI() 
{ 

Sharable Content Object Reference Model (SCORM) Version 1.1 4-15 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

   var theAPI = findAPI(window); 
 
   if ((theAPI == null) && (window.opener != null) && (typeof(window.opener) != 
"undefined")) 
   { 
      theAPI = findAPI(window.opener); 
   } 
   if (theAPI == null) 
   { 
      alert("Unable to find an API adapter"); 
   } 
   return theAPI 
} 

4.2.8. Content Structure Format XML Document 

This is an example of a Content Structure Format XML document.  This example 
corresponds to the sample course that comes with the sample Run-time Environment. 

 
<?xml version = "1.0"?> 
<!DOCTYPE course SYSTEM "scormcsf(1.1).dtd"> 
<content> 
   <globalProperties> 
      <externalMetadata> 
         <source>ADL</source> 
         <model>ADL SCORM 1.1</model> 
         <location><![CDATA[Course01.xml ]]></location> 
      </externalMetadata> 
      <curricularTaxonomy> 
         <model>ADL Sample LMS Course Model</model> 
      </curricularTaxonomy> 
   </globalProperties> 
   <!-- The whole course --> 
   <block id = "B0"> 
      <identification> 
         <title>Maritime Navigation</title> 
         <description>This course has four lessons that provide an overview of 
maritime navigation rules and principles.</description> 
         <labels> 
            <curricular>COURSE</curricular> 
            <developer>1235566-9759498</developer> 
         </labels> 
      </identification> 
      <!-- Lesson 01: Inland Rules of the Road; HTML format --> 
      <block id = "B100"> 
         <externalMetadata> 
            <source>ADL</source> 
            <model>ADL SCORM 1.1</model> 
            <location><![CDATA[Course01\Lesson01.xml]]></location> 
         </externalMetadata> 
         <identification> 
            <title>Inland Rules of the Road (HTML Format)</title> 
            <description>This lesson covers inland waterways navigation rules and 
principles.</description> 
            <labels> 
               <curricular>LESSON</curricular> 
               <developer>9934u939-2393938</developer> 
            </labels> 
         </identification> 
         <!-- SCO01: References and Objectives --> 
         <sco id = "S100001"> 
            <externalMetadata> 
               <source>ADL</source> 
               <model>ADL SCORM 1.1</model> 
               <location><![CDATA[Course01\Lesson01\sco01.xml]]></location> 
            </externalMetadata> 
            <identification> 
               <title>References and Lesson Objective</title> 
               <description>This SCO serves as a title page, citing references and 
listing the lesson objective.</description> 
               <labels> 
                  <curricular>SCO</curricular> 
                  <developer>940994-0983938</developer> 
               </labels> 
            </identification> 

4-16 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

            <launch> 
               <location><![CDATA[Course01\Lesson01\sco01.htm]]></location> 
            </launch> 
         </sco> 
         <block id = "B110"> 
            <identification> 
               <title>Steering &amp; Sailing Rules</title> 
               <description>This module covers the steering and sailing navigation 
rules for vessels on inland waterways.</description> 
               <labels> 
                  <curricular>MODULE</curricular> 
                  <developer>6523535-i843847</developer> 
               </labels> 
            </identification> 
            <sco id = "S110001"> 
               <externalMetadata> 
                  <source>ADL</source> 
                  <model>ADL SCORM 1.1</model> 
                  <location><![CDATA[Course01\Lesson01\sco02.xml]]></location> 
               </externalMetadata> 
               <identification> 

                  <location><![CDATA[Course01\Lesson01\sco04.htm]]></location> 

                  <title>Conduct of Vessels in any Condition of Visibility</title> 
                  <description>This SCO covers general inland vessel navigation rules. 
It includes definitions, collision avoidance, channels and traffic separation 
schemes.</description> 
                  <labels> 
                     <curricular>SCO</curricular> 
                     <developer>9893883-kk393839</developer> 
                  </labels> 
               </identification> 
               <launch> 
                  <location><![CDATA[Course01\Lesson01\sco02.htm]]></location> 
               </launch> 
            </sco> 
            <sco id = "S110002"> 
               <externalMetadata> 
                  <source>ADL</source> 
                  <model>ADL SCORM 1.1</model> 
                  <location><![CDATA[Course01\Lesson01\sco03.xml]]></location> 
               </externalMetadata> 
               <identification> 
                  <title>Conduct of Vessels in Sight of One Another</title> 
                  <description>This SCO covers multi-vessel interactions, movement 
patterns and rules.</description> 
                  <labels> 
                     <curricular>SCO</curricular> 
                     <developer>983893838-j83993</developer> 
                  </labels> 
               </identification> 
               <launch> 
                  <location><![CDATA[Course01\Lesson01\sco03.htm]]></location> 
               </launch> 
            </sco> 
            <sco id = "S110003"> 
               <externalMetadata> 
                  <source>ADL</source> 
                  <model>ADL SCORM 1.1</model> 
                  <location><![CDATA[Course01\Lesson01\sco04.xml]]></location> 
               </externalMetadata> 
               <identification> 
                  <title>Conduct of Vessels in Restricted Visibility</title> 
                  <description>This SCO covers the behavior of vessels on inland 
waterways when visibility is limited.</description> 
                  <labels> 
                     <curricular>SCO</curricular> 
                     <developer>9398398393-pp3393938</developer> 
                  </labels> 
               </identification> 
               <launch> 

               </launch> 
            </sco> 
         </block> 
         <sco id = "S100002"> 
            <externalMetadata> 
               <source>ADL</source> 
               <model>ADL SCORM 1.1</model> 
               <location><![CDATA[Course01\Lesson01\sco05.xml]]></location> 
            </externalMetadata> 
            <identification> 
               <title>Lights &amp; Shapes</title> 

Sharable Content Object Reference Model (SCORM) Version 1.1 4-17 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

               <description>This SCO covers vessel lighting schemes.</description> 
               <labels> 
                  <curricular>SCO</curricular> 
                  <developer>04393ke-kd93339</developer> 
               </labels> 
            </identification> 
            <launch> 
               <location><![CDATA[Course01\Lesson01\sco05.htm]]></location> 
            </launch> 

                  <developer>83874848f-l9398439</developer> 

            <source>ADL</source> 

         </sco> 
         <sco id = "S100003"> 
            <externalMetadata> 
               <source>ADL</source> 
               <model>ADL SCORM 1.1</model> 
               <location><![CDATA[Course01\Lesson01\sco06.xml]]></location> 
            </externalMetadata> 
            <identification> 
               <title>Sound &amp; Light Signals</title> 
               <description>This SCO covers inter-vessel communication schemes using 
sounds and lights.</description> 
               <labels> 
                  <curricular>SCO</curricular> 

               </labels> 
            </identification> 
            <launch> 
               <location><![CDATA[Course01\Lesson01\sco06.htm]]></location> 
            </launch> 
         </sco> 
         <sco id = "S100004"> 
            <externalMetadata> 
               <source>ADL</source> 
               <model>ADL SCORM 1.1</model> 
               <location><![CDATA[Course01\Lesson01\sco07.xml]]></location> 
            </externalMetadata> 
            <identification> 
               <title>Exam</title> 
               <description>This SCO is the lesson exam.  A score of 4 out of 5 is 
required for passing.</description> 
               <labels> 
                  <curricular>EXAM</curricular> 
                  <developer>k3839239-9389389d</developer> 
               </labels> 
            </identification> 
            <launch> 
                <location><![CDATA[Course01\Lesson01\sco07.htm]]></location> 
            </launch> 
            <masteryScore>4</masteryScore> 
         </sco> 
      </block> 
      <!-- Lesson 02: Inland Rules of the Road; Authorware format --> 
      <block id = "B200"> 
         <externalMetadata> 

            <model>ADL SCORM 1.1</model> 
            <location><![CDATA[Course01\Lesson02\Lesson02.xml]]></location> 
         </externalMetadata> 
         <identification> 
            <title>Inland Rules of the Road (Authorware Format)</title> 
            <description>This lesson covers inland waterways navigation rules and 
principles.</description> 
            <labels> 
               <curricular>LESSON</curricular> 
               <developer>838d83939-dl393939</developer> 
            </labels> 
         </identification> 
         <!-- SCO01: References and Objectives --> 
         <sco id = "S200001"> 
            <externalMetadata> 
               <source>ADL</source> 
               <model>ADL SCORM 1.1</model> 
               <location><![CDATA[Course01\Lesson02\sco01.xml]]></location> 
            </externalMetadata> 
            <identification> 
               <title>References and Lesson Objective</title> 
               <description>This SCO serves as a title page, citing references and 
listing the lesson objective.</description> 
               <labels> 
                  <curricular>SCO</curricular> 
               </labels> 
            </identification> 

4-18 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

            <launch> 
               <location><![CDATA[Course01\Lesson02\sco01.htm]]></location> 
            </launch> 
         </sco> 
         <block id = "B210"> 
            <identification> 
               <title>Steering &amp; Sailing Rules</title> 
               <description>This module covers the steering and sailing navigation 
rules for vessels on inland waterways.</description> 
               <labels> 
                  <curricular>MODULE</curricular> 
                  <developer>83d939393-kd9383838</developer> 
               </labels> 
            </identification> 
            <sco id = "S210001"> 
               <externalMetadata> 
                  <source>ADL</source> 
                  <model>ADL SCORM 1.1</model> 
                  <location><![CDATA[Course01\Lesson02\sco02.xml]]></location> 
               </externalMetadata> 
               <identification> 
                  <title>Conduct of Vessels in any Condition of Visibility</title> 
                  <description>This SCO covers general inland vessel navigation rules. 
It includes definitions, collision avoidance, channels and traffic separation 
schemes.</description> 
                  <labels> 
                     <curricular>SCO</curricular> 
                     <developer>339398d9393-3939d</developer> 
                  </labels> 
               </identification> 
               <launch> 
                  <location><![CDATA[Course01\Lesson02\sco02.htm]]></location> 
               </launch> 
            </sco> 
            <sco id = "S210002"> 
               <externalMetadata> 
                  <source>ADL</source> 
                  <model>ADL SCORM 1.1</model> 
                  <location><![CDATA[Course01\Lesson02\sco03.xml]]></location> 
               </externalMetadata> 
               <identification> 
                  <title>Conduct of Vessels in Sight of One Another</title> 
                  <description>This SCO covers multi-vessel interactions, movement 
patterns and rules.</description> 
                  <labels> 
                     <curricular>SCO</curricular> 
                     <developer>33920dd-309d0d</developer> 
                  </labels> 
               </identification> 
               <launch> 
                  <location><![CDATA[Course01\Lesson02\sco03.htm]]></location> 
               </launch> 
            </sco> 
            <sco id = "S210003"> 
               <externalMetadata> 
                  <source>ADL</source> 
                  <model>ADL SCORM 1.1</model> 
                  <location><![CDATA[Course01\Lesson02\sco04.xml]]></location> 

                  <description>This SCO covers the behavior of vessels on inland 
waterways when visibility is limited.</description> 

                     <curricular>SCO</curricular> 

               </externalMetadata> 
               <identification> 
                  <title>Conduct of Vessels in Restricted Visibility</title> 

                  <labels> 

                     <developer>39d09d0d9-9d9c9d</developer> 
                  </labels> 
               </identification> 
               <launch> 
                  <location><![CDATA[Course01\Lesson02\sco04.htm]]></location> 
               </launch> 
            </sco> 
         </block> 
         <sco id = "S200002"> 
            <externalMetadata> 
               <source>ADL</source> 
               <model>ADL SCORM 1.1</model> 
               <location><![CDATA[Course01\Lesson02\sco05.xml]]></location> 
            </externalMetadata> 
            <identification> 
               <title>Lights &amp; Shapes</title> 

Sharable Content Object Reference Model (SCORM) Version 1.1 4-19 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

               <description>This SCO covers vessel lighting schemes.</description> 
               <labels> 
                  <curricular>SCO</curricular> 
                  <developer>9839d98d9c9-c09d9d9</developer> 
               </labels> 
            </identification> 
            <launch> 
               <location><![CDATA[Course01\Lesson02\sco05.htm]]></location> 
            </launch> 
         </sco> 
         <sco id = "S200003"> 
            <externalMetadata> 
               <source>ADL</source> 
               <model>ADL SCORM 1.1</model> 
               <location><![CDATA[Course01\Lesson02\sco06.xml]]></location> 
            </externalMetadata> 
            <identification> 
               <title>Sound &amp; Light Signals</title> 
               <description>This SCO covers inter-vessel communication schemes using 
sounds and lights.</description> 
               <labels> 
                  <curricular>SCO</curricular> 
                  <developer>00d0c0d-c9d9c9</developer> 
               </labels> 
            </identification> 
            <launch> 
               <location><![CDATA[Course01\Lesson02\sco06.htm]]></location> 
            </launch> 
         </sco> 
         <sco id = "S200004"> 
            <externalMetadata> 
               <source>ADL</source> 
               <model>ADL SCORM 1.1</model> 
               <location><![CDATA[Course01\Lesson02\sco07.xml]]></location> 
            </externalMetadata> 
            <identification> 
               <title>Exam</title> 
               <description>This SCO is the lesson exam.  A score of 4 out of 5 is 
required for passing.</description> 
               <labels> 
                  <curricular>EXAM</curricular> 
                  <developer>8c9d8d8d-c9d9c8</developer> 
               </labels> 
            </identification> 
            <launch> 
               <location><![CDATA[Course01\Lesson02\sco07.htm]]></location> 
            </launch> 
            <masteryScore>4</masteryScore> 
         </sco> 
      </block> 
      <!-- Lesson 03: International Rules of the Road; (not implemented) --> 
      <block id = "B300"> 
         <externalMetadata> 
            <source>ADL</source> 
            <model>ADL SCORM 1.1</model> 
            <location><![CDATA[Course01\Lesson03\Lesson03.xml]]></location> 
         </externalMetadata> 
         <identification> 
            <title>International Rules of the Road</title> 
            <description>This lesson covers international waterways navigation rules 
and principles.</description> 
            <labels> 
               <curricular>LESSON</curricular> 
               <developer>8d8c9d8c99-s8d888</developer> 
            </labels> 
         </identification> 
         <sco id = "S300001"> 
            <externalMetadata> 
               <source>ADL</source> 
               <model>ADL SCORM 1.1</model> 
               <location><![CDATA[Course01\Lesson03\sco01.xml]]></location> 
            </externalMetadata> 
            <identification> 
               <title>Maritime Navigation - International Waterways Navigation Rules 
and Principles</title> 
               <description>This SCO serves as a title page, citing references and 
listing the lesson objective.</description> 
               <labels> 
                  <curricular>SCO</curricular> 
                  <developer>8c9d8d8d-c9d9c8</developer> 
               </labels> 

4-20 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

            </identification> 
            <launch> 
               <location><![CDATA[Course01\Lesson03\sco01.htm]]></location> 
            </launch> 
         </sco> 
      </block> 
      <!-- Lesson 04: Charting; (not implemented) --> 
      <block id = "B400"> 
         <externalMetadata> 
            <source>ADL</source> 
            <model>ADL SCORM 1.1</model> 
            <location><![CDATA[Course01\Lesson04\Lesson04.xml]]></location> 
         </externalMetadata> 
         <identification> 
            <title>Charting</title> 
            <description>This lesson covers charting principles and 
techniques.</description> 
            <labels> 
               <curricular>LESSON</curricular> 
               <developer>389838d8-d88d88</developer> 
            </labels> 
         </identification> 

<?xml version = "1.0"?> 

         <sco id = "S400001">  
            <externalMetadata> 
               <source>ADL</source> 
               <model>ADL SCORM 1.1</model> 
               <location><![CDATA[Course01\Lesson04\sco01.xml]]></location> 
            </externalMetadata> 
            <identification> 
               <title>Maritime Navigation - Charting Principles and Techniques</title> 
               <description>This SCO serves as a title page, citing references and 
listing the lesson objective.</description> 
               <labels> 
                  <curricular>SCO</curricular> 
                  <developer>8c9d8d8d-c9d9c8</developer> 
               </labels> 
            </identification> 
            <launch> 
               <location><![CDATA[Course01\Lesson04\sco01.htm]]></location> 
            </launch> 
         </sco> 
      </block> 
   </block> 
</content> 
 
 

4.2.9. Course Meta-Data XML Document 

This is an example of a Course Meta-data XML document.  This example corresponds to 
the sample course that comes with the sample Run-time Environment.  It presents an 
example that shows how one might implement course meta-data documents. 

 

<!DOCTYPE record SYSTEM "IMS_METADATAv1p1.dtd"> 
<record xmlns = "http://www.imsproject.org/metadata/"> 
   <metametadata> 
      <metadatascheme>ADL SCORM 1.1</metadatascheme> 
   </metametadata> 
   <general> 
      <title> 
         <langstring>Maritime Navigation</langstring> 
      </title> 
      <catalogentry> 
         <catalogue>ADL Sample Courses Catalog</catalogue> 
         <entry> 
            <langstring>Course01</langstring> 
         </entry> 
      </catalogentry> 
      <language>en</language> 
      <description> 
         <langstring>The purpose of this course is to demonstrate the functionality 
and capability of the ADL SAMPLE LMS. The material of this course is of the U.S 
Coast Guard's Rules of the Road in compliance with U.S. Regulations.</langstring> 

Sharable Content Object Reference Model (SCORM) Version 1.1 4-21 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

      </description> 
      <keywords> 
         <langstring>Sample LMS</langstring> 
      </keywords> 
      <keywords> 
         <langstring>Maritime Navigation</langstring> 
      </keywords> 
      <keywords> 
         <langstring>Rules of the Road</langstring> 

         <langstring>no</langstring> 

      </keywords> 
   </general> 
   <lifecycle> 
      <version> 
         <langstring>1.0</langstring> 
      </version> 
      <status> 
         <langstring>Final</langstring> 
      </status> 
      <contribute> 
         <role> 
            <langstring>Author</langstring> 
         </role> 
         <centity> 
            <vcard> 
                   BEGIN:vCard 
                   ORG:ADL Project 
                   END:vCard 
           </vcard> 
         </centity> 
         <date> 
            <datetime>2000-01-27</datetime> 
         </date> 
      </contribute> 
   </lifecycle> 
   <technical> 
      <format> 
         <langstring>text/html</langstring> 
      </format> 
      <size>535000</size> 
      <location type = "URI">Course01/</location> 
      <requirements> 
         <type> 
            <langstring>Browser</langstring> 
         </type> 
         <name> 
            <langstring>Microsoft Internet Explorer</langstring> 
         </name> 
         <minimumversion>5.0</minimumversion> 
      </requirements> 
      <otherplatformrequirements> 
         <langstring>jswdk1.2.2</langstring> 
      </otherplatformrequirements> 
   </technical> 
   <educational> 
      <learningresourcetype> 
         <langstring>Narrative Text</langstring> 
      </learningresourcetype> 
      <typicallearningtime> 
         <datetime>0000-00-00T00:02:00</datetime> 
      </typicallearningtime> 
   </educational> 
   <rights> 
      <cost> 

      </cost> 
      <copyrightandotherrestrictions> 
         <langstring>no</langstring> 
      </copyrightandotherrestrictions> 
   </rights> 
   <classification> 
      <purpose> 
         <langstring>Discipline</langstring> 
      </purpose> 
      <description> 
         <langstring>Maritime Navigation</langstring> 
      </description> 
      <keywords> 
         <langstring>Maritime Navigation</langstring> 
      </keywords> 
   </classification> 
</record> 

4-22 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 

4.2.10. Content Meta-Data XML Document 

This is an example of a Content Meta-data XML document.  This example corresponds to 
the sample course that comes with the sample Run-time Environment.  It presents an 
example that shows how one might implement content meta-data documents. 

 
<?xml version = "1.0"?> 
<!DOCTYPE record SYSTEM "IMS_METADATAv1p1.dtd"> 
<record xmlns = "http://www.imsproject.org/metadata/"> 
   <metametadata>    
      <metadatascheme>ADL SCORM 1.1</metadatascheme> 

            <langstring>Lesson01 SCO01</langstring> 

   </metametadata> 
   <general> 
      <title> 
         <langstring>Inland Rules of the Road Lesson References and 
Objectives</langstring> 
      </title> 
      <catalogentry> 
         <catalogue>ADL Sample Courses Catalog</catalogue> 
         <entry> 

         </entry> 
      </catalogentry> 
      <language>en</language> 
      <description> 
         <langstring>Lesson introduction page including references and 
objective.</langstring> 
      </description> 
      <keywords> 
         <langstring>Inland Maritime Navigation</langstring> 
      </keywords> 
      <keywords> 
         <langstring>U.S. Coast Guard</langstring> 
      </keywords> 
      <keywords> 
         <langstring>Reference</langstring> 
      </keywords> 
      <keywords> 
         <langstring>Objective</langstring> 
      </keywords> 
      <aggregationlevel>1</aggregationlevel> 
   </general> 
   <lifecycle> 
      <version> 
         <langstring>1.0</langstring> 
      </version> 
      <status> 
         <langstring>Final</langstring> 
      </status> 
      <contribute> 
         <role> 
            <langstring>Author</langstring> 
         </role> 
         <centity> 
            <vcard> 
                   BEGIN:vCard 
                   ORG:ADL Project 
                   END:vCard 
            </vcard> 
         </centity> 
         <date> 
            <datetime>2000-01-27</datetime> 
         </date> 
      </contribute> 
   </lifecycle> 
   <technical> 
      <format> 
         <langstring>text/html</langstring> 
      </format> 
      <size>4348</size> 
      <location>Course01/Lesson01/sco01.htm</location> 

Sharable Content Object Reference Model (SCORM) Version 1.1 4-23 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

      <requirements> 
         <type> 
            <langstring>Browser</langstring> 
         </type> 
         <name> 
            <langstring>Microsoft Internet Explorer</langstring> 
         </name> 
         <minimumversion>5.0</minimumversion> 
      </requirements> 
   </technical> 
   <educational> 
      <learningresourcetype> 
         <langstring>Narrative Text</langstring> 
      </learningresourcetype> 
      <typicallearningtime> 
         <datetime>0000-00-00T00:02:00</datetime> 
      </typicallearningtime> 
   </educational> 
   <rights> 
      <cost> 
         <langstring>no</langstring> 
      </cost> 
      <copyrightandotherrestrictions> 
         <langstring>no</langstring> 
      </copyrightandotherrestrictions> 
   </rights> 
   <classification> 
      <purpose> 
         <langstring>Discipline</langstring> 
      </purpose> 
      <description> 
         <langstring>Maritime Navigation</langstring> 
      </description> 
      <keywords> 
         <langstring>Maritime Navigation</langstring> 
      </keywords> 
   </classification> 
</record> 
 
 

4.2.11. Raw Media Meta-Data XML Document 

This is an example of a Raw Media Meta-data XML document.  This example 
corresponds to the sample course that comes with the sample Run-time Environment.  It 
presents an example that shows how one might implement raw media meta-data 
documents. 

 
<?xml version = "1.0"?> 
<!DOCTYPE record SYSTEM "IMS_METADATAv1p1.dtd"> 
<record xmlns = "http://www.imsproject.org/metadata/"> 
   <metametadata> 
      <metadatascheme>ADL SCORM 1.1</metadatascheme> 
   </metametadata> 
   <general> 
   <title> 
      <langstring>Navigation Lights while Run Aground</langstring> 
   </title> 
   <catalogentry> 
      <catalogue>ADL Sample Courses Catalog</catalogue> 
      <entry> 
         <langstring>aground.jpg</langstring> 
      </entry> 
   </catalogentry> 
   <language>en</language> 
   <description> 
      <langstring>Vessel aground (less than 50 meters in length)</langstring> 
   </description> 
   <keywords> 
      <langstring>vessel</langstring> 
   </keywords> 
   <keywords> 
      <langstring>navigation lights</langstring> 
   </keywords> 

4-24 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

   <keywords> 
      <langstring>aground</langstring> 
   </keywords> 
   </general> 
   <lifecycle> 
      <version> 
         <langstring>1.0</langstring> 
      </version> 
      <status> 
         <langstring>Final</langstring> 
      </status> 
      <contribute> 
         <role> 
            <langstring>Graphical Designer</langstring> 
         </role> 
         <centity> 
            <vcard> 
                   BEGIN:vCard 
                   ORG:ADL Project 
                   END:vCard 
            </vcard> 
         </centity> 
         <date> 
            <datetime>2000-01-27</datetime> 
         </date> 
      </contribute> 
   </lifecycle> 
   <technical> 
      <format> 
         <langstring>image/jpeg</langstring> 
      </format> 
      <size>10612</size> 
      <location>Course01/Lesson01/pics/aground.jpg</location> 
   </technical> 
   <educational> 
      <learningresourcetype> 
         <langstring>Figure</langstring> 
      </learningresourcetype> 
   </educational> 
   <rights> 
      <cost> 
         <langstring>no</langstring> 
      </cost> 
      <copyrightandotherrestrictions> 
         <langstring>no</langstring> 
      </copyrightandotherrestrictions> 
      <description> 
         <langstring>U.S. Coast Guard, Commandant Instruction M1667202C</langstring> 
      </description> 
   </rights> 
</record> 
 
 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 4-25 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 
 

4-26 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 

A. Appendix A (Appendix Number Style) 
APPENDIX  A    

Acronym List 
 

Sharable Content Object Reference Model (SCORM) Version 1.1 A-1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 

A-2 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 

Acronym Listing 
 

ADL Advanced Distributed Learning 
AICC Aviation Industry CBT Committee 
API Application Program Interface 
ASCII American Standard Code for Information Interchange 
AU Assignable Unit 
AWT Abstract Window Toolkit 
CBI Computer-Based Instruction 
CBT Computer-Based Training 
CDATA Character Data 
CMI Computer Managed Instructions 
CSF Content Structure Format 
DC Dublin Core 
DoD Department of Defense 
DoL Department of Labor 
DTD Document Type Definition 
HTML Hypertext Markup Language 
HTTP Hypertext Transfer Protocol 
IDA Institute for Defense Analyses 
IEEE Institute of Electrical and Electronics Engineers  
ISO International Organization for Standardization 
ITS Intelligent Tutoring Systems 
LMS Learning Management System 
LOM Learning Objects Metadata  
LTSC Learning Technology Standards Committee 
MIME Multipurpose Internet Mail Extensions 
NGB National Guard Bureau 
OSTP Office of Science and Technology Policy 
PCDATA Parsable Character Data 
SCO Sharable Content Object 
SCORM Sharable Content Object Reference Model 
URI Universal Resource Identifier 
URL Universal Resource Locator 
W3C World Wide Web Consortium 
WWW World Wide Web  
XML eXtensible Markup Language 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 A-3 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

 
 
 
 

This page intentionally left blank. 
 
 
 

A-4 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 

B. Appendix B (Appendix Number Style) 
APPENDIX  B    

References 
 

Sharable Content Object Reference Model (SCORM) Version 1.1 B-1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 

B-2 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 

References 
 

1. Aviation Industry CBT (Computer-Based Training) Committee. (www.aicc.org) 

2. Institute of Electrical and Electronic Engineers(IEEE) Learning Technology 
Standards Committee (LTSC). (ltsc.ieee.org) 

3. IMS Global Learning Consortium, Inc. (www.imsproject.org) 

4. AICC/CMI CMI001 Guidelines for Interoperability Version 3.4.  October 23, 2000. 
Includes: AICC Course Structure Format, AICC CMI Data Model 
Available at: www.aicc.org. 

5. ADL Co-Laboratories. (www.adlnet.org) 

6. Institute for Defense Analyses (IDA). (www.ida.org) 

7. Executive Order 13111: Using Technology To Improve Training Opportunities for 
Federal Government Employees. 

8. Gettinger, M. (1984)  Individual differences in time needed for learning: A review of 
the literature.  Educational Psychologist, 19,15-29. 

9. Graesser, A. C., & Person, N. K.  (1994).  Question asking during tutoring. 
American Educational Research Journal, 31, 104-137. 

10. Bloom, B.S. (1984).  The 2 sigma problem: The search for methods of group 
instruction as effective as one-to-one tutoring.  Educational Researcher, 13, 4-16. 

11. 

12. 

Fletcher, J. D. (2001) Evidence for Learning from Technology-Assisted Instruction.  
In H. F. O’Neil Jr. and R. Perez (Eds.)  Technology Applications in Education: A 
Learning View.  Hillsdale, NJ: Lawrence Erlbaum Associates. 

Alliance of Remote Instructional Authoring and Distribution Networks for Europe 
(ARIADNE).  (www.ariadne-eu.org) 

13. Gibbons, A.S. & Fairweather, P.G.  Computer-based Instruction. (2000)  In, S. 
Tobias and J.D. Fletcher (Eds.), Training and Retraining: A Handbook for Business, 
Industry, Government, and the Military.  New York: Macmillan Gale Group. 

14. Suppes, P.  (1964)  Modern learning theory and the elementary-school curriculum.  
American Educational Research Journal, 1, 79-93. 

15. Carbonell, J. R., “AI in CAI: An Artificial Intelligence Approach to Computer-
Assisted Instruction,”  IEEE Transactions on Man-Machine Systems, Vol. 11, 1970, 
pp. 190-202. 

16. Sleeman, D, & Brown, J. S. (Eds.) (1982) Intelligent Tutoring Systems.  New York, 
NY: Academic Press, 1982. 

Sharable Content Object Reference Model (SCORM) Version 1.1 B-3 

© 2001 Advanced Distributed Learning. 
All rights reserved. 

http://www.aicc.org/
http://www.imsproject.org/
http://www.aicc.org/
http://www.adlnet.org/
http://www.ida.org/
http://www.ariadne-eu.org/


 
 

17. Woolf, B.P., & Regian, J.W. (2000).  Knowledge-based training systems and the 
engineering of instruction.  In S. Tobias and J. D. Fletcher (Eds.), Training and 
retraining: A handbook for business, industry, government, and the military (339-
356).  New York: Macmillan Reference. 

18. Gibbons, A.S. & Fairweather, P.G. (1998)  Computer-based Instruction: Design and 
Development.  Englewood-Cliffs, NJ: Educational Technology Publications. 

19. 

20. 

Gibbons, A.S. & Fairweather, P.G. (2000) op. cit. 

IMS Content Packaging Specification Version 1.1.   
Available at: www.imsproject.org. 

21. IEEE Information Technology - Learning Technology - Learning Objects Metadata 
LOM: Base Scheme – v3.5 (1999-07-15) and Explanatory Notes for LOM v3.5. 
As referenced by the IMS Learning Resource Meta-data Specification Version 1.1. 
Available at: ltsc.ieee.org. 

22. IMS Learning Resource Meta-data Specification Version 1.1. 
Includes: IMS Learning Resource Meta-data Information Model, IMS Learning 
Resource Meta-data XML Binding Specification, and IMS Learning Resource Meta-
data Best Practice and Implementation Guide 
Available at: www.imsproject.org. 

23. ISO 639: This is an international standard for the representation of languages. 
Version 1 uses two-letter language codes, e.g. 'en' for English, 'fr' for French, 'nl' for 
Dutch, etc. These language codes are a basis for the IETF registry of language tags, 
as specified in RFC 1766: Tags for the identification of languages. 
Available at: www.iso.ch. 

24. ISO 3166: This is an international standard for the representation of  country names, 
e.g. 'BE' for Belgium, 'CA' for Canada, 'FR' for France, 'GB' for United Kingdom, 
'US' for United States, etc. 
Available at: www.iso.ch. 

25. vCard: This standard defines how contact details for people and organizations can be 
represented.  
Available at: www.imc.org/pdi. 

26. ISO 8601: This is an international standard that specifies numeric representations of 
date and time.  
Available at: www.iso.ch. 

World Wide Web Consortium (W3C).  www.w3c.org 
Includes: Universal Resource Locator, Universal Resource Identifier, Extensible 
Markup Language Version 1.0, Document Object Model (DOM) Specification. 

27. 

28. Dublin Core Metadata Initiative. purl.org/dc/. 

B-4 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 

http://www.imsproject.org/
http://www.imsproject.org/
http://www.iso.ch/
http://www.iso.ch/
http://www.imc.org/pdi
http://www.iso.ch/
http://www.w3c.org/


 
 

 
 
 
 
 

C. Appendix C (Appendix Number Style) 
APPENDIX  C    
Revision History 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 C-1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 
 
 

C-2 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 
 

Revision History 
 

The following is a summary of changes from the SCORM Version 1.0 to the SCORM 
Version 1.1. 

Meta-data changes 

 

• Changed <au> element to <sco> element 

• Replaced IMS Version 1.0 DTD with the IMS Version 1.1 DTD 

CSF changes 

• Changed <course> element to <content> element 

• Change <auAlias> element to <scoAlias> element 

• Removed <extensions> element 

• Removed <completionReq> element 

• Removed <objectives> element 

• Removed <objective> element 

• Removed <objectiveRef> element 

• Changed <blockAlias> and <scoAlias> (was <auAlias>) targetID attribute to type 
IDREF 

• Removed <assignmentRef> element 

 

Added more detail to each sub-section of the Run-time Environment section 

• Launch 

• API 

• Data Model 

 

Run-time Environment Launch changes 

• Added more detail in describing the launching of SCOs 

Sharable Content Object Reference Model (SCORM) Version 1.1 C-3 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

 

Run-time Environment API changes 

• LMSInitialize(“”), LMSFinish(“”) and LMSCommit(“”) now must all take in an 
empty string as a parameter. 

• LMSInitialize(“”), LMSFinish(“”), LMSCommit(“”) and LMSSetValue() must 
now all return a string that can be converted to a CMIBoolean (“true” or “false”) 

• More detailed information on the descriptions of each of the API calls 

• Added API Error Code usage section 

o Defines the scenarios on when to use the different error codes 

o Added new error codes 

• Changed findAPI() algorithm to no longer search the sibling frames 

 

Run-time Environment Data Model changes 

• Added new table to describe in detail all data model elements. 

 

Run-Time Environment Data Model Element Changes 

 

Data Model Element Change from SCORM 1.0 

cmi.core._children Changed the data type CMIString256 to 
CMIString255 

cmi.core.student_id None 
cmi.core.student_name Changed the data type CMIString256 to 

CMIString255 
cmi.core.lesson_location Changed the data type CMIString256 to 

CMIString255 
cmi.core.credit None 
cmi.core.lesson_status None 
cmi.core.entry None 
cmi.core.score._children Changed the data type CMIString256 to 

CMIString255 
cmi.core.score.raw None 
cmi.core.score.min None 
cmi.core.score.max None 
cmi.core.total_time None 
cmi.core.lesson_mode None 
cmi.core.exit None 
cmi.core.session_time None 
 

C-4 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

cmi.suspend_data None 
 
cmi.launch_data None 
 
cmi.comments This element is now used to hold  

comments from the SCO/Student.  A SCO 
can now invoke LMSGetValue() and  
LMSSetValue() on this element. 

cmi.comments_from_lms This new element was added to be a place 
where comments from the LMS and/or 
instructor can be placed and used by the 
SCO. 

 
cmi.objectives._count None 
cmi.objectives._children Changed the data type CMIString256 to 

CMIString255 
cmi.objectives.n.id None 
cmi.objectives.n.score._children Changed scores to score. 

Changed the data type CMIString256 to 
CMIString255. 

cmi.objectives.n.score._count Removed the support for list of scores for 
objectives 

cmi.objectives.n.score.raw Removed the list support for score. Each 
objective can now only have 1 score.  
Name change from scores to score. 

cmi.objectives.n.score.min Removed the list support for score. Each 
objective can now only have 1 score.  
Name change from scores to score. 

cmi.objectives.n.score.max Removed the list support for score. Each 
objective can now only have 1 score.  
Name change from scores to score. 

cmi.objectives.n.status Removed the list support for score. Each 
objective can now only have 1 score. 
Name change from scores to score. 

cmi.objectives.n.mastery_time Removed 

cmi.evaluation._children Removed 
cmi.evaluation.course_id Removed 
cmi.evaluation.comments Removed 
cmi.evaluation.comments.n.time Removed 
cmi.evaluation.comments.n.location Removed 
cmi.evaluation.comments.n.content Removed 
cmi.evaluation.interactions._children Removed 
cmi.evaluation.objectives_status._children Removed 
cmi.evaluation.paths._children Removed 
cmi.evaluation.performance._children Removed 
cmi.evaluation.lesson_id Removed 
cmi.evaluation.date Removed 
 
cmi.interactions._children Added 
cmi.interactions._count Added 
cmi.interactions.n.id Changed the data type CMIString256 to 

CMIString255 
cmi.interactions.n.objectives._count Added 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 C-5 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

cmi.interactions.n.objectives.n.id Changed the data type CMIString256 to 
CMIString255 

cmi.interactions.n.time None 
cmi.interactions.n.type None 
cmi.interactions.n.correct_responses._count Added 
cmi.interactions.n.correct_responses.n.pattern None 
cmi.interactions.n.weighting None 
cmi.interactions.n.student_response None 
cmi.interactions.n.result None 
cmi.interactions.n.latency None 
 
cmi.student_data._children Changed the data type CMIString256 to 

CMIString255 
cmi.student_data.attempt_number Removed 
cmi.student_data.mastery_score None 
cmi.student_data.max_time_allowed None 
cmi.student_data.time_limit_action None 
cmi.student_data.attempt_records._count Removed 
cmi.student_data.attempt_records._children Removed 
cmi.student_data.attempt_records.n.lesson_score._children Removed 
cmi.student_data.attempt_records.n.lesson_score.raw Removed 
cmi.student_data.attempt_records.n.lesson_score.min Removed 
cmi.student_data.attempt_records.n.lesson_score.max Removed 
cmi.student_data.attempt_records.n.lesson_status Removed 
cmi.student_data.tries_during_lesson Removed 
cmi.student_data.tries.n.score.raw Removed 
cmi.student_data.tries.n.score.max Removed 
cmi.student_data.tries.n.score.min Removed 
cmi.student_data.tries.n.status Removed 
cmi.student_data.tries.n.time Removed 
 
cmi.student_demographics._children Removed 
cmi.student_demographics.city Removed 
cmi.student_demographics.class Removed 
cmi.student_demographics.company Removed 
cmi.student_demographics.country Removed 
cmi.student_demographics.experience Removed 

Removed 
cmi.student_demographics.instructor_name Removed 
cmi.student_demographics.title Removed 
cmi.student_demographics.native_language Removed 
cmi.student_demographics.state Removed 
cmi.student_demographics.street_address Removed 
cmi.student_demographics.telephone Removed 
cmi.student_demographics.years_experience Removed 
 
cmi.student_preference._children Changed the data type CMIString256 to 

CMIString255 
cmi.student_preference.audio None 
cmi.student_preference.language Changed the data type CMIString256 to 

CMIString255 
cmi.student_preference.lesson_type Removed 
cmi.student_preference.speed None 
cmi.student_preference.text None 

cmi.student_demographics.familiar_name 

C-6 Sharable Content Object Reference Model (SCORM) Version 1.1 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 
 

cmi.student_preference.text_color Removed 
cmi.student_preference.text_location Removed 
cmi.student_preference.text_size Removed 
cmi.student_preference.video Removed 
cmi.student_preference.windows.n Removed 
 
cmi.paths.n.location_id Removed 
cmi.paths.n.time Removed 
cmi.paths.n.status Removed 
cmi.paths.n.why_left Removed 
cmi.paths.n.time_in_element Removed 
 

 

Run-Time Environment Data Type Changes 

CMIDate Removed 
CMIBoolean Changed the types to all lower case (“true”, “false”) 
CMIFeedback Added more information, to define the usage of the CMIFeedback data type 
CMILocale Removed 
CMISIdentifier Removed 
CMIString255 Changed CMIString255 – maximum length of 255 characters 
CMITime Now can have at most 2 digits following the optional decimal (i.e. 34.43) 
CMITimespan Now can have at most 2 digits following the optional decimal (i.e. 34.43) 
 

Run-Time Environment CMIVocabulary Changes 

 

Exit Added an additional vocabulary “” – empty string 
Why Left Removed 
Credit Changed “no credit” to “no-credit” 
Entry Added an additional vocabulary “” – empty string 
Time Limit Action Changed all vocabulary choices 
Interaction Changed “multiple choice” to “choice” 

Changed “fill in the blank” to “fill-in” 
Changed “simple performance” to “performance” 

 

 

 

Sharable Content Object Reference Model (SCORM) Version 1.1 C-7 

© 2001 Advanced Distributed Learning. 
All rights reserved. 



 

 
 

 



 

 

 
 
 


	SECTION I (Page Number Style)
	SECTION II (Page Number Style)
	SECTION III (Page Number Style)
	SECTION IV (Page Number Style)
	Appendix A (Appendix Number Style)
	Appendix B (Appendix Number Style)
	Appendix C (Appendix Number Style)


