Advanced Bistributed Learning

Sharable Courseware Object Reference Model

JLORM

Version 1.0

Send questions/comments to:

secretariat@adinet.org

© 2000 Concurrent Technologies Corporation (CTC).
CTC hereby authorizes others to use this material without restriction.

This page was intentionally |eft blank.

ADL Sharable Courseware Object Reference Model

www.adlnet.org

contact: secretariat@adlnet.org

Editor: Philip Dodds
Partial List of Contributors:

ADL
Ron Ball
Richard Burke
Dexter Fletcher
Alan Hoberney
Paul Jesukiewicz

AICC (www.aicc.org)
Jack Hyde
Bill McDonald
Anne Montgomery

IEEE (Itsc.ieee.org)
Mike Fore
Wayne Hodgins

IMS (www.imsproject.org)
Thor Anderson
Steve Griffin
Tom Wason

(At Large)
Chris Moffatt
Claude Ostyn

Chantal Paquin

Dan Rehak
Tom Rhodes
Tyde Richards

Roger St. Pierre

...and many others

SCORM (1.0)

Page 3

This page was intentionally |eft blank.

ADL Sharable Courseware Object Reference Model

ADL Sharable Courseware Object Reference Model

Version 1.0

January 31, 2000

1. Overview
1.1 Status of the Sharable Courseware Object Reference Model 9
1.2 Accelerating the Process 9
1.3 Specification Evolution and Example Code 10
2. Goal 11
2.1 Rationde 11
The Need For Competency 11
The Value of Tailored Instruction 11
The Effectiveness of Technology-Based Instruction 12
Promoting The Use of Technology-Based Instruction 13
2.2 The Need For A Reference Mode 14
2.3 Reference Modd Ciriteria 14
3. SCO Reference Model 17
3.1 Defining “Learning Management Systems” 17
3.2 Overview of SCO Reference Model (Narrative) 18
3.3 High Level Requirements and SCORM Scope 19
3.4 Web-based Design Assumption 20
4. Definitions 21
4.1 Sharable Courseware Object 22
4.2 Sharable Courseware Object Reference Model 22
4.3 Course Structure Format [1] 2
4.3.1 External Course Metadata [14] 22
4.3.2 Assignment Hierarchy [1b] 22
4.3.3 Objectives [1c] 22
4.3.4 Assignment Hierarchy Metadata [1e€] 22
4.4 Content [2] 22
4.4.1 Content Metadata [24] 22
4.5 Raw Media[3] 22
4.5.1 Raw Media Metadata [34] 23
4.6 Run Time Environment [4] 23
4.6.1 Content Launch Protocol [4a] 23
4.6.2 Content Application Program Interface [4b] 23
SCORM (1.0) Page 5

ADL Sharable Courseware Object Reference Model

4.6.3 Content Data Model [4c] 23
5. XML Course Structure Format (CSF) 25
5.1 Overview 25
5.2 Scope 25
5.3 Approach 25
5.4 Course “Packaging’ 26
5.5 Course Interchange Overview 26
5.5.1 Source/Model/L ocation Structure 26
5.5.2 Course Sequencing Using Prerequisites and Completion Requirements 27
5.5.3 Unique IDs and ID References, and Aliases 28
5.5.4 | dentification Model 29
5.5.5 CSF Extension Mechanism 30
5.6 Course Information — global Properties 31
5.7 Course Structure Hierarchy — block 3
5.8 Assignable Unit —au 36
5.9 Objectives 39
5.10 CSF Element Definitions/Descriptions 11
5.11 Examples 44
5.11.1 Most Simple Example of CSF Record 14
5.11.2 Simple Example Pointing to Content 14
5.11.3 Example of Course With One Block 14
5.11.4 Example of Course With Blocks Within Blocks 45
5.11.5 Multi-Tiered Example (Seven Levels) 46
5.12 Conformance Testing a7
5.13 Sample Course Mappings a7
6. Run Time Environment
6.1 Overview
6.2 SCORM and the AICC API Specification
6.3 APl Adapter

6.4 Content Launch

6.5 Application Program Interface (AP!)
6.5.1 API Table (from AICC CMI 3.0.1, Appendix B)

6.6 Further Defining Content as “ Assignable Units’ (AUs)
6.6.1 Content asa“Lesson”
6.6.2 Content as an “ Assignable Unit”
6.6.3 SCORM “Assignable Unit” Definition
6.6.4 Defining a*“ Sharable Courseware Object” as an Assignable Unit
6.6.5 Small “ Sharable Courseware Objects’
6.6.6 Content Sequencing Control
6.6.7 Toward Adaptive And Intelligent Tutoring

6.7 “CMI” DataMode
6.7.1“CMI” LMS to Content (AU) Data Model

99988 L 4D S 8 S & b

a
©

3

SCORM (1.0) Page 6

ADL Sharable Courseware Object Reference Model

6.7.2 “CMI” Content (AU) to LMS Data Model 64
6.7.3 Student Data Collection 66
6.7.4“CMI” Data Types and Controlled Vocabularies 68

6.8 Conformance Testing 63
7. Metatdata 71
7.1 Overview 71
7.2 Definitions of SCORM Metadata Elements: 71
7.2.1 Raw Media Metadata 71
7.2.2 Content Metadata 72
7.2.3 External Course Metadata 72
7.2.4 SCO Structure Format (Assignment Hierarchy) Metadata 72

7.3 SCORM Metadata Mapping 73
7.4 Stand-Alone XML Metadata Records 85
7.5 XML Schema, Namespaces and Extensibility 85
7.6 Conformance Testing 85
7.7 XML Examples 85
7.7.1 Empty Raw Media XML Metadata record 86
7.7.2 Empty Content XML Metadata record 87
7.7.3 Course Metadata XML record 89

8. Sample SCORM Code 91
8.1 Sample LMS and Content 91
8.1.1 LMS Server R
8.1.2 LMS Client A
8.1.3 AICC CMI Data Model 95
8.1.4 Sample Course 96
8.1.5 Mapping Example Code to the SCORM 97
8.1.6 Structure of Sample LM S Application 98
8.1.7 Flow of Sample LM S Application 99
8.1.8 APl Wrapper JavaScript Code Fragment 99
8.1.9 Course Structure Format XML fragment 101
8.1.10 Course Metadata XML Example 102
8.1.11 Assignable Unit (Content) Metadata XML Example 104
8.1.12 Raw Media Metadata XML Example 105

8.2 Course Structure Format Browser/Editor 107
8.2.1 Overview of CSF Browser/Editor 108

9. Acronym List 109
Appendix A — Supporting Documents 111
A.1 SCORM Course Structure Format DTD 111
A.2 Course Structure Format Mapping to AICC Structure 114
Appendix B — AICC API Specification 117
Appendix C — |EEE Learning Object Metadata Draft 3 153
Appendix D — IMS Learning Resource Metadata XML Binding Specification 183
Appendix E — Reference Materia 205

SCORM (1.0) Page 7

ADL Sharable Courseware Object Reference Model

AICC Learning Model Definitions 205
Army Learning Structure Definitions 206
Air Force Shared Content Object Model 207
Marine Corps Learning Object Taxonomy 208
ADL Learning Taxonomy Mapping 209
Appendix F — Document Change Summary 211

SCORM (1.0) Page 6

ADL Sharable Courseware Object Reference Model

1. Overview

The Department of Defense (DoD) established the Advanced Distributed Learning
(ADL) Initiative to develop a DoD-wide strategy for using learning and information
technologies to modernize education and training. In order to leverage existing practices,
promote the use of technology-based learning, and provide a sound economic basis for
investment, the ADL initiative has defined high-level requirements for learning content
such as content reusability, accessibility, durability, and interoperability.

This document attempts to define a reference model for sharable courseware “ objects’
that meet ADL high-level requirements. It should be possible to map existing learning
models and practices to this reference model so that common interfaces and data may be
defined and standardized across courseware management systems and devel opment tools.

1.1 Status of the Sharable Courseware Object Reference Model

The release of this document completes the initial drafting and review of early-stage
Web-based learning specifications. With this release, the Advanced Distributed Learning
(ADL) Initiative's Sharable Courseware Object Reference Model (SCORM) enters a test
and evaluation phase, during which researchers and early adopters are encouraged and
expected to develop trial implementations based on these specifications. During this
testing phase, corrections, clarifications, and improvements — based on the tria
implementations — will be gathered and redistributed for review.

In parallel with the testing phase, which is expected to take four-to-six months, the ADL
Co-Laboratory (ADL Co-Lab) plans to release example implementations, addenda to this
document, and at the end of the phase, a suite of conformance-test software. These
products will permit content and tool developers to verify that their work products
conform to the SCORM specification and are reusable, interoperable, accessible, and
durable.

It is critically important for readers to understand that the specifications contained or
referenced herein are largely untested in practice. Although example implementations
supporting these specifications are available and a number of organizations have
implemented portions of the SCORM, these specifications have yet to be deployed as a
system or as a fully supported product.

1.2 Accelerating the Process

The purpose of the ADL Initiative, among other things, is to accelerate the devel opment
and adoption of technical specifications that promote sharable content and systems.
Thus, this release is designed to encourage rapid trial implementations, incorporate the

SCORM (1.0) Page 9

ADL Sharable Courseware Object Reference Model

findings of those participating, and share results with as wide an audience as possible —
al in “Internet time.”

We expect some organizations to adopt elements of the SCORM specifications
immediately in order to take early advantage of the benefits of a common approach.
These organizations will necessarily accept the risk that some aspects of the
specifications may change as experience through implementations is gained. Of course,
those who accept the risk early on stand the likelihood of being farther up the learning
curve than those who wait, and early adopters can influence the resolution of ambiguities
that may exist.

1.3 Specification Evolution and Example Code

The release of SCORM 1.0 indicates the belief that the specifications are as stable as they
can be before being tested through trial implementations. The release of Version 1.0
includes a suite of examples that implement various parts of the specifications. These
examples are provided, without cost or restriction, to accelerate more sophisticated
implementations. Those who review or use the code examples are encouraged, but not
required, to provide feedback and/or other code examples to the ADL Initiative that may
be shared with others. In thisway, the specifications will become more complete and
accurate, and test-development software will become robust.

Through this process, the ADL Initiative will provide interim releases (e.g., Versions 1.1,
1.2) that clarify, amplify, and generally improve the usability of these specifications.
When this process has stabilized in roughly four to six months and conformance software
has been completed and tested by the ADL CO-Lab, a“final” version, probably “2.0,”
will be released.

It is hoped and expected that the changes made during this test phase will not
significantly change the intent or technical approach contained in Version 1.0. Changes
that impede implementation or are determined to be outright oversights will be
incorporated into Version 1.1. New topics that expand the overall scope of the SCORM
will be added if they are judged to be appropriate and stable. Other, more comprehensive
changes will be included in later versions of the SCORM.

SCORM (1.0) Page 10

ADL Sharable Courseware Object Reference Model

2. Goal

A key ADL requirement for learning content is the ability to reuse instructional
components in multiple applications and environments regardless of the tools used to
create them. Thisrequires, among other things, that content be separated from context-
specific runtime constraints so that it can be incorporated into other applications. For
reuse to be possible, content must also have common interfaces and data. This document
attempts to specify areference model that abstracts runtime constraints and defines a
common interface and data scheme for reusable content.

2.1 Rationale
The Need for Competency

Government, industry, and academia are experiencing a revolution in science and
technology of unprecedented proportions. This revolution and the advances it presents
pose both significant challenges and opportunities. Organizations must adopt these
advances and leverage them if they are to compete successfully in the 21st Century;
however, infusing technology in routine operations increases the demand for people who
can deploy, operate, and maintain it competently. Despite the increasing presence of
technology, competent human performance remains as essential as ever, and its ready
availability is a matter of the first importance in all sectors of the economy.

Fortunately, technology also provides the means to meet the challenges it presents. As
new instructional technologies emerge, they provide opportunities for universally
accessible and effective life-long learning. These technologies extend learning beyond
the confines of traditional classrooms to encompass homes, workplaces, and community
resources such as museums and libraries. They extend beyond the traditional school-age
population to support a nation of life-long learners.

These considerations have led to a vision that guides the work of the ADL Initiative.
Thisvison is:

To ensure all Americans access, anytime and anyplace, to high quality education
and training tailored to their individual learning and workplace needs.

The Value of Tailored Instruction

Empirical studies have raised national interest in employing education and training
technologies that are based on the increasing power, accessibility, and affordability of
computer and networking technologies. These studies suggest that the promise of
training technologies, such as computer-based instruction, interactive multimedia
instruction, and intelligent tutoring systems, keys on their ability to tailor instruction to
the needs of individuals. In contrast to classroom learning, these approaches enable the
pace, sequence, content, and method of instruction to better fit each student’s learning
style, objectives, and goals.

SCORM (1.0) Page 11

ADL Sharable Courseware Object Reference Model

These technologies alow individualy tailored training to be delivered anytime,
anywhere, and to anyone who needs it. Such accessibility pays off both for the individual
who wishes to advance knowledge, skill, and career opportunities and for the
organization that depends on his or her growing competencies to compete successfully in
the global marketplace.

The intuitive appeal of technology-based instruction has been supported by research. The
speed with which individuals can progress through instruction has been found to vary by
factors of three to five (or even as much as seven), even in classes of carefully selected
students.! On average, a student in classroom instruction asks about 0.1 questions an
hour.? Inindividual tutoring, students may ask or be required to answer as many as 120
guestions an hour. The achievement of individually tutored students may exceed that of
classroom students by as much as two standard deviations — an improvement that is
roughly equivalent to raising the performance of 50th percentile students to that of 98th
percentile students.®

The dilemma presented by individually tailored instruction is that it combines an
instructional imperative with an economic impossibility. With few exceptions, one
instructor for every student — despite its advantages — is not affordable. The promise of
instructional technology is that it can provide most of the advantages of individualized
instruction at affordable cost while maintaining consistent, measurable, high-quality
content.

The Effectiveness of Technology-Based Instruction

Studies have shown that technology-based instruction may significantly reduce the costs
to achieve awide range of instructional objectives by 30-60 percent. These studies have
also found that it either reduces the time to achieve given instructional objectives by
about 30 percent or that it increases student skills and knowledge by about 30 percent,
depending on whether achievement or time is held constant.

The value of these capabilitiesin reducing direct training costs is obvious. The savings
accrued through improved management of indirect costs such as productivity and time
away from ajob site are more difficult to quantify and capture but are equally significant
when determining the full return on investments in instructional technologies.

For instance, reducing by 30 percent the time to train just 40 percent of all DoD students
in specialized skill training, which excludes other categories such as recruit training, pilot

! Getti nger, M. (1984) Individual differencesin time needed for learning: A review of the literature.
Educational Psychologist, 19,15-29.

2 Graesser, A. C., & Person, N. K. (1994). Question asking during tutoring. American Educational
Research Journal, 31, 104-137.

s Bloom, B.S. (1984). The 2 sigma problem: The search for methods of group instruction as effective as
one-to-one tutoring. Educational Researcher, 13, 4-16.

SCORM (1.0) Page 12

ADL Sharable Courseware Object Reference Model

training, unit training, and field exercises could potentially save the DoD over $500
million annually.

Figure 1. Some Effect Sizes for Technology-Based Instruction

1.2

1.05
L0 0.84
o 08
.(B A
5 0.6
5 0.4
0.2
0.0
Computer Interactive "Intelligent" Recent
Based Multimedia Tutoring Intelligent
Instruction Instruction Systems Tutors
(233 Studies) (47 Studies) (11 Studies) (5 Studies)

Given these potential cost savingsit is reasonable to ask whether training effectivenessis
being lost to achieve them Figure 1 shows results aggregated from empirical
comparisons of technology-based training with conventional classroom instruction. As
the figure shows, 233 such studies of conventional computer-based instruction averaged
an improvement in learning of about 0.39 standard deviations. Adding multimedia
capabilities also adds effectiveness, raising the improvement to 0.50 standard deviations.
Intelligent tutoring systems intended to more directly emulate one teacher interacting
with one student and allowing either the student or the computer to ask questions,
increases the improvement to 0.84 standard deviations. Some recent assessments of
intelligent tutoring systems yielded improvements averaging about 1.05 standard
deviations. We have not yet met the 2.00 standard deviation challenge, but the trends are
promising.

Promoting the Use of Technology-Based Instruction

There is, then, evidence that technology-based instruction can both lower training costs
and at the same time increase instructional effectiveness for a variety of training
objectives and programs. Yet its use is only beginning. For instance, data collected
suggest that less than 5 percent of DoD training programs routinely use interactive
training technologies. Technology insertion, as is often the case with new applications,
may depend on issues that are more structural and organizational than technological.
Accounting categories, local incentives, personnel policies, and training procedures must
be changed to make the best use of these new training capabilities.

Despite these difficulties, the benefits of technology-based instruction are increasingly
recognized, and initiatives are being undertaken to increase its use. Primary among these

SCORM (1.0) Page 13

ADL Sharable Courseware Object Reference Model

isthe ADL Initiative. The aim of thisinitiative is to increase the efficiency of
investments in technol ogy-based instruction through the development of Web-available,
“sharable courseware objects’ that are reusable in the development of technol ogy-based
instruction, portable across different presentation platforms, accessible through the use of
metadata standards for identifying and locating them, and durable across different
versions of operating systems, browsers, and other supporting systems software.

This DaD initiative is being undertaken in cooperation with the Military Departments and
the Office of Science and Technology Policy, which plans to extend the ADL approach
across all Federal training programs. The private sector involved in producing
technology-based instructional systems and solutions as well as academia are also
expected to adopt the ADL approach as it develops.

2.2 The Need for a Reference Model

Successful implementation of this initiative will require issuance of guidelines that are
shared and observed by organizations that have a stake in the development and use of
instructional technology materials. The ultimate form and status of these guidelines
remain to be determined. They may be international or national standards, agreed upon
practices, recommendations, or de facto practices.

If these guidelines are to be successfully articulated and implemented, they must be based
on a.common “reference model.” This model will not replace the detailed models of
instructional system design or practice that have been devised and adopted by specific
organizations such as those of instructional developers, instructional tool developers, or
customers associated with particular industries or the Armed Forces. Instead, the
purpose of the reference model is to describe an approach to devel oping instructional
material in sufficient detail to permit guidelines for the production of sharable courseware
objects to be clearly articulated and implemented.

2.3 Reference Model Criteria

There are three primary criteria for such a sharable courseware objects reference model.
First, as stated above, it must fully support articulation of guidelines that can be
understood and implemented for the production of sharable courseware objects. Second,
it must be adopted, understood, and used as much as possible by as wide a variety of
stakeholders, such as courseware and courseware tool developers and their customers.
Third, it must permit mapping of any stakeholder’s specific model for instructional
systems design and development into itself. Stakeholders must be able to see how their
own model of instructional system design is reflected by the reference model they hold in
common.

Applications of information technology have been shown to increase both the
effectiveness and efficiency of training; however, up-front investment is required to
develop and convert training materials for technology-based presentation. These

SCORM (1.0) Page 14

ADL Sharable Courseware Object Reference Model

investment costs may be reduced by an estimated 50-80 percent through the use of
sharable courseware “ objects’ that are:

1. Durable —do not require modification as versions of system software change.

2. Interoperable — operate across a wide variety of hardware, operating systems, and
Web browsers.

3. Accessible — can be indexed and found as needed.
4. Reusable — can be modified and used by many different development tools.

Procedures for devel oping such courseware objects are within the state-of-the-art, but
they must be articulated, accepted, and widely used as guidelines by developers and their
customers. These goals can only be achieved through collaborative development.
Collaboration will aso increase the number, quality, and per unit value of courseware
objects made available. Such collaboration requires agreement upon a common reference
model.

SCORM (1.0) Page 15

This page was intentionally |eft blank.

ADL Sharable Courseware Object Reference Model

3. SCO Reference Model

This section provides a high-1evel overview of the scope and purpose of the SCORM.
Subsequent sections define technical details for implementing each aspect of the model.

3.1 Defining “Learning Management Systems”

Learning Management System (LMYS) is used as a catch-all term throughout this
document. It refersto a suite of functionalities designed to deliver, track, report on, and
administer learning content, student progress, and student interactions. Theterm LMS
can apply to very simple course management systems or highly complex, enterprise-wide
distributed environments.

Many participants in the development of learning technology standards now use the term
LMS instead of “ Computer-Managed Instruction” (CMI) so as to include new
functionalities and capabilities that have not historically been associated with CMI
systems such as back-end connections to other information systems, complex tracking
and reporting, centralized registration, online collaboration, and adaptive content
delivery.

External systems: ! | Learning

Comem Server(s) HR, E-Commerce, ERP.. : Server Course
Interchange:
Course
Structure
Format (CSF),
: Mlgrallon] Metadata
! dapter

Services or Adapter

Learning Server

| () |
/l I | Sérver Side

Lear Client Side Runtime
earning Environment:
Management ¢ Launch, API
System” Data Model
LMS

Figure 3.1a— Broad definition of “ Learning Management System” (LMS) as a suite of server-side
functionalitiesthat controlsthe delivery and tracking of learning content to a client-side student. The
SCORM does not specify functionality within the LMS. Only Course I nterchange, Metadata, and
Runtime Environment are “in scope” for thisversion of SCORM.

Theterm LM S is now being used as a “superset” description of many possible
capabilities. Within the SCORM context, implementations are expected to vary widely.
SCORM focuses on key interface points between content and LM S environments and is
silent about the capabilities provided within a particular LMS.

SCORM (1.0) Page 17

ADL Sharable Courseware Object Reference Model

Within the SCORM context, the term LMS implies a server-based environment in which
the intelligence resides to control the delivery of learning content to students. 1n other
words, in the SCO reference model, the LM S has the “smarts’ about what to deliver and
when, and tracks student progress through the learning content.

Learning content, therefore, does not play a“management” role in the SCORM because
that function falls entirely within the LMS. That means that SCORM content does not
determine (on its own on the client-side) how to navigate through a course or when a
student has completed a section of the course; that’s the LMS's job. This approach frees
content from course-specific constraints and permits content to be developed that is
reusable, sharable, and as context independent as possible.

3.2 Overview of SCO Reference Model (Narrative)

The SCORM defines a Web-based learning “content model.” At its smplest, it is a set of
interrelated specifications designed to meet DoD’ s hightlevel requirements for Web-
based |earning content reusability, accessibility, durability, and interoperability.

The work of the ADL Initiative in developing the SCORM is also a process of knitting
together disparate groups and interests. It is hoped that this reference model will serve as
a bridge from general emerging technologies to commercia implementations.

A number of organizations have been working on different, yet highly related aspects of
Web-based learning technology. These work areas have coalesced into three major
topics. metadata, runtime environment, and course interchange. Although these evolving
areas have made great strides recently, they have not yet been “ connected” to one another
in ameaningful way. In some cases, emerging specifications are quite general,
anticipating a wide variety of implementations by various user communities (e.g.,
metadata). In other cases, the specifications are rooted in earlier CM| practices and
require adaptation to Web-based applications.

It is the purpose of the SCORM to apply current technology developments — from groups
such as the Instructional Management Systems (IMS) Project, the Aviation Industry CBT
Committee (AICC), and the Institute of Electrical and Electronics Engineers (IEEE)
Learning Technology Standards Committee (L TSC) — to a specific content model and to
produce recommendations for consistent implementations by the vendor community.

The scope of the SCORM is not al-inclusive. A host of issues are not addressed by this
version of the document. It is expected that the scope will be enlarged over time, and the
reference model will be expanded as experience is gained through implementation and
deployment.

This version of the SCO reference model comprises three magjor elements:

SCORM (1.0) Page 18

ADL Sharable Courseware Object Reference Model

1. Course Structure Format: An Extensible Markup Language (XML)-based
representation of a course structure that can be used to define al of the course elements,
structure, and external references necessary to move a course from one LM S environment
to another (Section 5 of this document).

2. Runtime Environment: A definition of Runtime Environment that includes a
specific launch protocol to initiate executable Web-based content, a common content-to-
LMS application program interface (API), and a data model defining the data that is
exchanged between an LM S environment and executable content at runtime (Section 6 of
this document).

3. Metadata: A mapping and recommended usage of IEEE LTSC Metadata
elements for each of the following SCORM categories (Section 7 of this document):

Course M etadata: A definition for external metadata that describes a course

package for the purposes of searching (enabling discoverability) within a
courseware repository and providing descriptive information about the course.

Content Metadata: A definition of metadata that can be applied to Web-based
content “chunks’ that provide descriptive information about the content
independent of a particular course. This metadata is used to facilitate reuse and
discoverability of such content within, for example, a content repository.

Raw Media Metadata: A definition of metadata that can be applied to so-called
“raw media’ assets such as illustrations, documents, or media streams, that
provide descriptive information about the raw media independent of courseware
content. This metadata is used to facilitate reuse and discoverability principally
during content creation of such media elements within, for example, a media

repository.

3.3 High-Level Requirements and SCORM Scope

The SCORM document frequently references the following high-level ADL requirements
throughout this document. The definitions below describe the capabilities that the
SCORM expects to enable:

Accessibility: the ability to access instructional components from one remote
location and deliver them to many other locations

I nteroperability: the ability to use instructional components developed in one
location with one set of tools or platform in another location with a different set of
tools or platform (Note: there are multiple levels of interoperability.)

Durability: instructional components that do not require redesign or recoding to
operate when base technology changes

SCORM (1.0) Page 19

ADL Sharable Courseware Object Reference Model

Reusability: the design of instructional components so that they can be
incorporated into multiple applications.

These can be restated as:

The ability of aWeb-based LMS to launch “executable” content authored using
tools from different vendors and to exchange data with that content

The ability of Web-based LMS products from different vendors to launch the
same executable content and exchange data with that content during execution

The ability of multiple Web-based LM S products/environments to access a
common repository of executable content and to launch such content.

During the initial implementation and testing phases, these requirement statements will
be used as evaluation criteria.

3.4 Web-based Design Assumption

The SCORM assumes an Internet, Web-based infrastructure as a basis for its technical
implementation. This assumption was made for several reasons:

Web/Internet technologies and infrastructure are rapidly expanding and provide a
mainstream basis for learning technologies

Web-based learning technologies standards do not yet exist

Web-based content can be delivered using nearly any type of medium (e.g., CD-
ROM, stand-alone systems, and/or as- networked environments).

This approach embraces the main stream transition to common content and delivery
formats that is occurring in industry. Computer operating system environments now
natively support Web content formats such asHTML and JPEG. The trend is toward the
use of common content formats that can be used locally, on local Intranets, or over the
Internet. The SCORM extends this trend to learning technologies.

SCORM (1.0) Page 20

4. Definitions

Figure 4a— ADL SCO Reference Model Diagram

ADL Sharable Courseware Object Reference Model

External
Course
Meta-
data
[1a]
(XML
record)

<4

SCO Course Structure Format (XML) [1]

[1b] Assignment Hierarchy
Block Root (Course)

Metadata [1e]

“Block”
(Parent Node)

Metadata [1€]

3 [3] “Raw [3a] Raw
Media” | Media
Metadata
(XML
record)

o 2

Content
Metadata
[2a]

Content (AU) [2]]

“Block”

(Parent Node) Metadata [1¢€]
‘AL

(Assignable Metadata [1e]
Unit —

Leaf Node) (Points to)

Objectives [1c]

»| | (Internal organization of (XML record)

files, objects, etc.)

a—

[4] Run Time Environment

[4a] Content Launch
Protocol 4
K

[4b] Content API

[4c] Content data model

SCORM (1.0)

Page 21

ADL Sharable Courseware Object Reference Model

4.1 Sharable Courseware Object

An interoperable, durable, computer-based course or component of a course packaged
with sufficient information to be reusable and accessible.

4.2 Sharable Courseware Object Reference Model

A software model that defines the interrelationship of course components, data models,
and protocols such that courseware “objects’ are sharable across systems that conform
with the same mode.

4.3 Course Structure Format [1]

A Course Structure Format (CSF) defines all of the course elements, the course structure,
and all external references necessary to represent a course and its intended behavior.

4.3.1 External Course Metadata [1a]
Information that can be searched externally such as the course title, course
description, and version

4.3.2 Assignment Hierarchy [1b]

A tree structure that defines a hierarchical lesson plan for a course. The ordering
of the tree elements defines a default sequence for the execution of each of the
assignments in the course

4.3.3 Objectives [1c]
A statement of skills, knowledge, and attitudes to be acquired by the student

4.3.4 Assignment Hierarchy Metadata [1e]

Metadata that is described with the specific assignments at different levels within
the lesson plan hierarchy (e.g., course element metadata within a particular course
hierarchy that is context specific to that course hierarchy)

4.4 Content [2]
Content that runs on a client (i.e., executed within a client-side browser)

4.4.1 Content Metadata [2a]

Metadata that describes a[sharable] “chunk” of content; content metadata is not
related to a specific course structure (i.e., context-independent metadata);
information that can be searched externally such as content asset title, description,
and version.

4.5 Raw Media [3]

Media assets such as images, sounds, text, or other presentation documents that may be
incorporated into executable assets (content) during authoring or dynamically at runtime;

SCORM (1.0) Page 22

ADL Sharable Courseware Object Reference Model

media assets have metadata but are not expected to be used standalone (i.e., outside of
content)

4.5.1 Raw Media Metadata [3a]

Metadata that describes raw media elements in a non-context specific manner;
information that can be searched externally such as media asset title, description,
date of creation, and version information that can be used to create a searchable
repository of sharable media elements

4.6 Runtime Environment [4]

Defined mechanisms for starting (launching) executable content and exchanging data
between an LM S and the content

4.6.1 Content Launch Protocol [4a]

Protocol used to launch the executable content and connect it to the Application
Program Interface (AP!) provided by an LMS

4.6.2 Content Application Program Interface [4b]
API used by the content to communicate with an LMS

4.6.3 Content Data Model [4c]

Definition of the data exchanged between an LM S and the content launched under
control of such a system:

- The LMS makes student data available to the content

- The content passes learner performance data and other tracking information
back to the LMS

SCORM (1.0) Page 23

This page was intentionally |eft blank.

ADL Sharable Courseware Object Reference Model

5. XML Course Structure Format (CSF)

5.1 Overview

The purpose of this CSF is to provide a means for moving a course from one LMSto
another. A course structure format defines all of the course elements, the course
structure, and all external references necessary to represent a course and its intended
behavior.

This CSF isintended to promote reuse of entire courses and encourage the reuse of
course components by exposing all the details of each course element. The CSF is
intended to reduce or eliminate dependency of a course on a particular LMS
implementation.

This CSF was codeveloped by a number of organizations, including ADL, AICC, IEEE,
and IMS. Many thanks go to Jack Hyde and Bill McDonald for providing the basis of
course structure in the AICC's CMI specifications (and supporting this effort), Tyde
Richards, who constructed the very first XML versions of this structure, Thor Anderson
(IMS) for hiswork in harmonizing the CSF with the IMS metadata efforts, Dan Rehak
for keeping us honest, and to many others who continue to contribute to this effort on an
ongoing basis.

5.2 Scope

This CSF is (only) an intermediate format for representing Web-based courses that are
being moved from one LMS to another. It does not define LMS functionality. Itis
assumed that an LMS may have a private, unique representation for course e ements and
structure, and that the LM S can “export” a CSF file or record that can then be “imported”
by another LMS and stored inits local form. The CSF is not intended to require LMS
systems to adopt the CSF model or structure internally.

5.3 Approach

The CSF isintended to represent a wide variety of course structures and content
“aggregations.” Content structures can be represented by the CSF that range from very
small “chunks’ of content —as simple as afew lines of Hypertext Markup Language
(HTML) or short media clip — to highly interactive learning content that is tracked by an
LMS. The CSF is neutral about the complexity of content, the number of hierarchical
levels of a particular course (i.e., “granularity”), and the instructional methodol ogy
employed to design a course.

This CSF is derived from the AICC content model for course structure, properties, and
objectives. This model was chosen as a starting point because key components of course
representation are defined in the AICC’s Semantic Document v3.0 (CMI-Sem30.doc).
One objective of thisversion of the CSF is to map the course structure, properties, and

SCORM (1.0) Page 25

ADL Sharable Courseware Object Reference Model

objectives in the AICC-defined tables into an XML format for Web applications.
Another objective is to extend the CSF to include additional features such as referencing
external IMS/IEEE metadata records. Thus, this CSF extends the AICC CMI practice to
include new capabilities for Web-based content.

5.4 Course “Packaging”

The CSF should not be confused with so called “ course packaging.” Packaging isthe
process of identifying all course files, regardless of type, and then physically bundling all
of these components together with a manifest (packing dip) for movement from one
environment to another. The CSF is simply one of the “files’ needed to physically move
a course from one place to another (albeit a very important one). Actual content,
metadata records, and raw media must also be “packaged” with a CSF when a courseis
moved from one place to another. The CSF is, therefore, a“blueprint” for assembling all
of the constituent pieces once a course has arrived at its destination.

5.5 Course Interchange Overview

The CSF describes a course using three groups of information. The first group, called
global Properties, is the data about the overall course. The second, called block, defines
the structure of the course, and the third group, objectives, defines a separate structure for
learning objectives with references to course el ements within the assignment structure.

? globalProperties

Bcourse block ~

? objectives

Figure5.5.a— CSF high-level XML DTD structure [no notation = one element required; “?” = zero or
one (optional)]

5.5.1 Source/Model/Location Structure

A number of CSF Elements use a common substructure to define externally referenced
information or practices. The ideaisto provide away to determine which organizational
standards, technical specifications, or other relevant information are helpful to
understanding the intent of the course. Although the usage will vary dightly from one
element to another, the general intent is that subelement:

Source: describes the source or originator of a given practice or specification to
which this course adheres. Examples could include ADL CSF, AICC CMI, IEEE
LOM, ARMY LEARNING STRUCTURE, etc.

Mode : describes a specific data model, defining structure, or specification to
which this course adheres. Examples could include ADL SCORM 1.0, AICC

SCORM (1.0) Page 26

ADL Sharable Courseware Object Reference Model

CMI 3.0.1, IEEE LOM 3.1, etc.

Location: describes the location where the controlling specification or referenced
material may be found.

5.5.2 Course Sequencing Using Prerequisites and Completion Requirements

CSF elements block, au, and objective each have subelements called prerequisites and
completionReq. These elements provide afield that can be used to algorithmically
represent the sequence of events through a course. These elements mirror certain tracked
data elements in the data model described in section 6. The data model provides a means
for content to report to an LM S when a particular part of a course is*complete” or
“incomplete.” An LMS can then eva uate the statements in prerequisites and
completionReq to determine what the student should be delivered next.

The prerequisites element defines what other parts of the course must be completed
before starting the parent block, au, or objective. Similarly, completionReq (completion
requirements) defines what other course parts must be completed to consider the parent
“done.” Thisalowsan LMS to compute multiple paths through a course.

The use of prerequisites and completion requirements is described in great detail in the
AICC’s Semantic Document v3.0 (CMI-Sem30.doc) in section 6. The following table,
which is extracted from this AICC document, describes the logic encoding used for these
two elements:

All elements separated by an & must be compete for the expression to be evaluated as complete.
And A34 & A36 & A38

Assignable units numbers 34, 36, and 38 must all be complete (Passed or Completed) for the group to
be considered complete.

If any of the elements separated by an | are passed, the expression is considered true.
Or A34=P | A36=P | A38=P
If any one of the lessons, 34, 36, or 38, are passed, the group is considered complete.

An operator that returns incomplete (false) if the following element or expression is complete, and
Not returns complete (true) if the following element or expression is incomplete (false).

Element Identifier: A34

Requirement: ~A35

The student may enter unit A34 as long as unit A35 has not been completed (that is, the status of
A35 must be Incomplete, Failed, or Not attempted). If assignable unit A35 is complete, the student
may not enter unit A34.

An operator that returns true when representations on both sides of the symbol have the same
Equals values.

Element Identifier: A34

Requirement: A33=Passed

The student may enter unit A34 if he or she has passed unit A33.

An operator that returns true when elements on both sides of the symbol have different values.
Not Element Identifier: A34

equals Requirement: A35<>Passed

The student may enter unit A34 as long as he or she has not passed A35. Notice the difference
between this expression and the example for the not operator. The equivalent of ~A35 is
(A35<>Passed & A35<>Completed)

SCORM (1.0) Page 27

ADL Sharable Courseware Object Reference Model

A list of course elements separated by commas and surrounded by curly brackets -- { }. A set differs
Set from a block, in that the set is defined only for purposes of the prerequisite file. A set has no effect on
the structure of the course.

{A34, A36, A37, A39}

Assignable units A34, A36, A37, and A39 are part of a set.

The comma is used to separate the members of a set. Each member of the set can be evaluated
Separator | as a Boolean element — complete or incomplete.

{A34, A36, A37, A39}

Assignable units A34, A36, A37, and A39 are each separated by a comma in this set.

X'is an integer number. This operator means that X or more members of the set that follows
X* must be complete for the expression to be complete (true).

Element Identifier: A38

Requirement: 3*{A34, A36, A37, A39}

Any three or more of the following units — 34, 36, 37, 39 -- must be complete before the student
can enter unit 38.

The expression within the parenthesis () must be evaluated before combining its results with
Evaluate other parts of the logical statement. Parentheses may be nested.4

1st Element Identifier: A39

Requirement: A34 & A35 | A36

In this statement, completing A36 all by itself enables the sudent to enter A39.

Element Identifier: A39

Requirement: A34 & (A35 | A36)

Adding the parenthesis makes it necessary to complete at least two units (A36 all by itself is no
longer sufficiend) to enter unit A39.

The elements prerequisites and completionReq require that their values be of XML type
CDATA to preserve al of the characters within a sequencing expression. A “type’
attribute is also provided to identify the type of algorithmic script being used in the
CDATA fidld. In thisexample the aicc_script “language’ defined aboveisin use, and
blocks B1, B2, and assignable unit A1 must be completed before the parent may be
entered:

<prerequi sites type="aicc_script"> <![CDATA] B1&B2&A1]] >
</ prerequi sites>

5.5.3 Unique IDs and ID References, and Aliases

Three of the CSF elements use the XML “ID” and “IDRef” attributes to uniquely identify
other elements within the CSF. These are the block, objective, and au elements. These
three elements are candidate targets for reference elsewhere within the CSF. XML
requires that these attribute values begin with a letter and may otherwise be composed of
letters, digits, hyphens, underscores, and full-stop characters.

XML also requires the attribute value to be unique with the XML document (which fits
the usage in this course representation). D attributes may not have fixed default values,
and only one attribute per element may be of type ID. It is assumed that the assignment
of 1D values will be automated within tools and LM S environments to ensure uniqueness.

SCORM has adopted the following usage convention:

“Operator precedenceis the same asin the C programming language, including the use of parenthesis.

SCORM (1.0) Page 28

ADL Sharable Courseware Object Reference Model

Block B+int
Assignable Unit (AU) A+tint
Objective O+int

Note: This convention closely follows prior AICC practices except that “ O” is used for
Objectiveinstead of “ J” for “ Objective” ids. This change was made for clarity.

ID References (IDREF) are essentialy “pointers’ to specific CSF elements that have Ids
and must match one of the IDs in the CSF record.

Note: Provision has been made for a“relation” attribute for ID References. Thisisin
recognition of the need to define the nature of a reference for proper interpretation by an
LMS. An objective, for example, might have arelation that is “satisfied by” the
completion of ablock reference. Because no relations models have been defined at this
time, however, this attribute is reserved for future use.

Similar to IDs, there are three “aliases’ in the content hierarchy—blockAlias, AuAlias,
and ObjectiveAlias. These were provided as a shorthand way to provide a second or third
(or more) reference to the same course element without having to restate the same
information in-line. Similar to ID References, an alias must match an 1D within the same
XML record. By convention it is expected that aliases will not be used in a CSF record
until after the referenced element has been defined (to avoid the need for forward
referencing).

5.5.4 Identification Model
Title & Description

The same Identification subtree structure is used under blocks aus, and objectives. The
most important elements of this model are title and description. Note that identification-
titleis a minimum required element throughout the CSF (description is optional).

At first glance, title and description look similar to the same kind of metadata discussed
in section 7 of this document. Thisis not exactly the case, athough the contents of these
elements could contain the same or similar information to that found in a stand-alone
metadata record. Within the CSF, these elements are meant to store the title and
description within the context of the course. A reusable learning object, for example,
might have a generic name in a separate XML record used principally to identify it.

SCORM (1.0) Page 29

ADL Sharable Courseware Object Reference Model

Within a course, however, the course designer may want to rename that object to
something more meaningful in the context of a particular course.

Similarly, a description for a reusable content object might describe what the object does
(e.g., “Provides anintroduction to XML for novices’); within the CSF, however, the
description might describe what the object is within a specific course (e.g., “Chapter 3 —
First Introduction to XML Structures).

Curricular and Developer Labels

Identification also provides a labels element that can be used to store information that
might be useful to course developers. Developer may be used to store a tag or label
useful to the developer that might be in use by convention within an organization or as a
byproduct to the use of atool. These elements allow such information to be
contextualized and carried along with course when it is moved.

The curricular label is aso “informative’ and is intended to be used to describe the name
(label) of the element according to local practices. This label could be used to identify
names such as “Course”, “Unit”, “Lesson”, “Module”, “Learning Step,” etc. These
terms are expected to be derived from a known model using a known vocabulary that
should be defined under global Properties using the curricular Taxonomy element.

The labels subtree is intended to capture valuable and important information about a
course and its construction; however, these elements are considered “informative” and
not expected to affect how content is actually delivered.

5.5.5 CSF Extension Mechanism

Throughout the CSF, provisions have been made for extensions. The extension element
includes information about the source of the extension, its model, the location for the
defining specification, and name/value pairs of extended elements.

This extension mechanism was included with the realization that no course structure
model could completely anticipate the needs of all users; however, the use of extensions
comes with great risk. Extensions unilaterally implemented by one LMS could be, at
best, meaningless to another LM, and at worst, result in the course not behaving as
intended, or perhaps not operating at all when moved.

It is therefore recommended that extensions be implemented with care and that
appropriate documentation and organizational policy be established to manage
community-specific additions.

SCORM (1.0) Page 30

ADL Sharable Courseware Object Reference Model

It is also expected that conventions for extensions, and provisions for name spaces
associated with subcommunities, will evolve to ease the risk of local customization.
Future versions of this document are expected to provide guidance in this area.

5.6 Course Information — globalProperties

The global Properties node of the CSF contains or references information about the
course as awhole. It aso provides information describing the general approach used
during the design of the course.

“ource ~ 1=
-|—E@
Cocation Ji=]

| source ~ 1
m ? curricularTaxonomy ~ m
location ~ |

m ? 9lobalProperties

source ~ |
| W~ ensions B oie— 1
lcourse

[E

- KT
mi ? objectives |

Figure5.6.a— GlobalProperties XML DTD structure[no notation = one element required;“?” = zero or
one (optional); “+” = oneor morerequired; “*” = zero or morerequired]

5.6.1 Global Properties — externalMetadata

External course metadata is referenced within global Properties in metadataExter nal Ref.
This metadata defines, among other things, information that can be searched externally
such as the course title, course description, version, etc. The SCORM assumes that the
external course metadata “ pointed to” (referenced) by metadataExternalRef is a separate
metadata record as defined in Section 7.2 of this document.

The CSF “points to” an external metadata record rather than including it in-line in order
to avoid redundancy and to reduce the overall size and complexity of the CSF. Because a
stand-alone metadata definition based on the |EEE Learning Object Metadata
specification exists, it need not be duplicated within the CSF.

SCORM (1.0) Page 31

5.6.2 Global Properties — curricular Taxonomy

ADL Sharable Courseware Object Reference Model

Global Properties provides a tag for how courses are constructed, called
curricularTaxonomy. Thistag can identify the methodology of a particular community
of usersin assembling course components. This element indicates the user community
and, therefore, infers the structure of the course, naming conventions (e.g., unit, lesson,
learning step, etc.), and number of levels or tiers of content aggregation.

Some examples of different course structures are given in Appendix E of this document.
The table below illustrates how curricular Taxonomy might be used:

Course Course Course Course
Module Block Phase Performance
Objective

Lesson Module SubCourse Enabling

(Annex) Obijective
Learning Lesson Lesson Teaching
Objective Point
Learning Learning Task
Steps Objective

Learning

Objective

Learning Step

In these examples, the curricular Taxonomy Model element helpsto predict the probable
depth of the content hierarchy. For example, the Marine model suggests seven course
levels, the Army and Air Force models are five levels deep, and the Canadian level
contains four levels.

Understanding the design methodology used during course construction and
understanding the different approaches to content aggregation will assist in content reuse
and provide important information to an LM S when courses are moved.

5.6.3 Global Properties — extensions

(see section 5.5.5 CSF Extension Mechanism)

SCORM (1.0) Page 32

ADL Sharable Courseware Object Reference Model

5.7 Course Structure Hierarchy — block

The block group defines all of the course elements and their organizational structure.
This tree structure defines a hierarchical lesson plan for a course. The ordering of the
tree elements defines a default sequence for the execution of each of the “assignments’ in
the course. Embedded within this tree structure are data e ements defining the type,
source, and location of each course element.

The block structure defines two types of course content: blocks and assignable units
(aus). The terms blocksand aus are drawn directly from the AICC’'s CMI specification
AICC s Document CMI1001 “AICC CMI Guidelines for Interoperability (Revision 3.0.1,
Release 24 November 1999.”)

ADL Course Structure (Editable)

@ [J ADL Course Root -
o 1 block: Maritime M avigation
@ Cd block: Inland Rules of the Road
|j| au: References
@ C block: Steering : & Sailing Rules
E| au: Canduct of Yessels in any Condition of Visibility
E| au: Conduct of Yessels in Sight of One Another
E| au: Conduct of Yessels in Restricted Visihility
|j| au: Lights : & Shapes
|j| au: Sound ;& Light Signals
|j| au: Exam
E‘] hlock: International Rules of the Foad
[block: Charting
@ [objective: ohjectives
@&] abjective: Inland Rules afthe Road
D ahbjective: International Rules of the Road

&

-
Figure 5.7a— Example Course Structure

A block is ahierarchical grouping of other blocksor aus. The top-most block (the root of
the hierarchical tree) is the top level of the “course.” Thistop level may contain blocks
or assignable units, or both.

Blocks may be nested; blocks might group together smaller groups of blocks which in
turn may contain references to content (aus). Examples of blocks might include
“chapters,” “units,” and “learning steps’, etc.

SCORM (1.0) Page 33

ADL Sharable Courseware Object Reference Model

I g2 prerequisites - [g=|

g JlobalProperties
| source ~_jg=|
g+ externalMetadata jgrgg model ~ =]

Toaion 1]
B Cbjcctiverer - |
Site = A=
Wi senification MM > description - 1=
% curioular~ B=]
2 labels Il e o]

gL 7.completionRed — gi=|

source ~ |

: m Mmodel ~ |
s ensions g e
_ ocation ~

Srame = =]
| e S
S
I-E

i ? objectives |

Figure5.7b—
“+” = oneor morerequired; “*” = zero or morerequired]

(optional);

Block XML DTD structure [no notation = one element required; “?” = zero or one

This hierarchical approach to representing course structure in the CSF is intended to
accommodate a wide variety of courseware models. Simple courses may not have many
levels of blocks, while complex courses could have many blockswithin blocks. The
global Properties tag, curricular Taxonomy, is intended to identify the model convention

type.

5.7.1 Block — externalMetadata

The optiona external Metadata subelement offers course devel opers the opportunity to
more fully describe course blocks throughout the content hierarchy. Similar to

global Properties, this element is expected to point to stand-alone XML metadata records
as specified in section 7 of this document.

5.7.2 Block — objectivesRef

This element is used to “point” to an objective. It tiesa particular portion of a courseto a
specific objective. See section 5.5.3.

SCORM (1.0)

Page 34

ADL Sharable Courseware Object Reference Model

5.7.3 Block — identification

This element provides context-specific information about a block including title,
description, curricular label, and developer label. See section 5.5.4.

5.7.4 Block — prerequisites

This element defines what portions of a course must be completed before this element’s
parent may be started. See section 5.5.2.

5.7.5 Block — completionReq

This element defines what portions of a course must be completed before this element’s
parent is considered to be “complete.” See section 5.5.2.

5.7.6 Block — extensions
(see section 5.5.5 CSF Extension Mechanism)

5.7.7 Block — au/block

The element block may include one or more subblocks and/or one or more aus. This
defines the course hierarchy. The following XML fragment illustrates the hierarchical

tree structure:
<cour se>
<bl ock id="B1">

<identification>
<title>Maritime Navigation</title>
<| abel s>

<curricul ar>UNI T</ curricul ar>

</ | abel s>

</identification>

<bl ock id="B2">
<identification>
<title>nland Rules of the Road</title>
<l abel s>
<curri cul ar >MODULE</ curri cul ar >
</ | abel s>
</identification>
<au id="Al1">
<identification>
<title>References</title>
</identification>
<l aunch>
<l ocat i on>/ Cour ses/ Cour se01/ Lesson01/ au0l1. ht m </ | ocat i on>
</l aunch>
</ au>
<bl ock id="B3">
<identification>
<title>Steering &*#38; Sailing Rules</title>
<| abel s>
<curricul ar >MODULE</ curri cul ar >
</ | abel s>
</identification>

SCORM (1.0) Page 35

ADL Sharable Courseware Object Reference Model

5.7.8 Block — blockAlias

Element blockAlias provides areference to a previously defined block to avoid the need
to duplicate identical block definitions within ablock structure. See section 5.5.3.

5.8 Assignable Unit — au

References to course content in the CSF are made using the au (assignable unit) element.
This element references learning content that is to be launched by an LMS on the
student’s client platform. The au element within the CSF contains all of the context-
specific information needed to launch a “chunk” of content such as its location, name,
launch parameters, and prerequisites. (Note that au’s may be arbitrarily small pieces of
content that, at a minimum, are launched and then terminated with no communications
with an LMS, or they may be more complex pieces of content that generate data that is
tracked by an LMS))

SCORM (1.0) Page 36

ADL Sharable Courseware Object Reference Model

W globalProperties)
source - 1=
" icralMetadata MM model - [1=]

Socaton]
B CbjcctiveRel |
Tile 1=
B ienification W 7 doscription R
2 currioular = 1=
? label
2 abels [l

g7 prerequisites ~ [g=|
I course
lcourse g g2 completionReq =]

= source ~ |

. m model ~ |
= * extensions |— -
m location ~I

g e 1T
mml + propert E
B exemalMetadaia |
B necrer 1 |
B centicatont |
b= a1
B completonreq 1|
TR
T v 5
Ciocaton 1]
B unch = rorersuing X
= dataFromiis - o]
B nastenyScoie A=
(e
=

| blockAlias ~ gl |
g ? objectives |

Figure 5.8a— Assignable Unit (au) XML DTD structure [no notation = one element required; “ ?" = zero
or one (optional); “+” = oneor morerequired; “*” = zero or more required)]

The au element in the CSF may optionally use external Metatdata to reference an external
metadata record that could contain information about a piece of content that is
independent of a particular course (i.e., non-context specific. Such metadata would be
useful within “content repositories’).

SCORM (1.0) Page 37

ADL Sharable Courseware Object Reference Model

5.8.1 Assignable Unit — externalMetadata

The optional external Metadata subelement is intended to point to external stand-alone
XML records that more fully describe the assignable unit content referenced in this
parent’s element. This reference is expected to be informational rather than functional.

5.8.2 Assignable Unit — objectivesRef

This element is used to “point” to an objective. It ties a particular portion of acourseto a
specific objective. See section 5.5.3.

5.8.3 Assignable Unit —identification

This element provides context-specific information about an assignable unit including
title, description, curricular label, and developer label. See section 5.5.4.

5.8.4 Assignable Unit — prerequisites

This element defines what portions of a course must be completed before this element’s
parent may be started. See section 5.5.2.

5.8.5 Assignable Unit — completionReq

This element defines what portions of a course must be completed before this element’s
parent is considered to be “complete.” See section 5.5.2.

5.8.6 Assignable Unit — timeLimit

This e ement has two time-related subelements: maxTimeAllowed and timeLimitAction.
The first, maxTimeAllowed, defines the amount of time the student is alowed to havein
the current attempt on the lesson.

The second element, timeLimitAction, defines what alesson should do when the
maximum time allowed has elapsed. Similar to prerequisites and completionReq, this
element has a “type’ attribute for identifying the kind of value in use. In the “AICC”
case (which the SCORM has adopted), there is a fixed vocabulary for this element:

Time Limit Action: | Exit Continue
Message no message

SCORM (1.0) Page 38

ADL Sharable Courseware Object Reference Model

5.8.7 Assignable Unit —launch

The launch element has three subelements: location, parameter String, and
dataFromLMS. The location subelement contains the URI (Universal Resource
Identifier) of the actual assignable unit content to be launched. Thisis the manner in
which the CSF “points’ to launchable assignable units.

Theoptiona parameter String element holds a character string to use during content
launch if needed. (Thisis similar to options one might type following the name of a
program or, in Java, the arguments one would process in main (String[] args)).

The dataFromLMS element provides a place for initialization data expected by the
content during launch. This data is unconstrained and undefined. Note: usage of this
element is not yet well defined and should be used with caution.

5.8.8 Assignable Unit — masteryScore

This element establishes the passing score for this assignable unit in this case. Note that
what is considered a passing score often depends on the context of an assignable unit
within a course. Some courses may set the mastery score for an AU higher than in
others.

This element assumes that the assignable unit has some content that will report score
(such as atest) over the APl and data model defined in section 6 of this document.

5.8.9 Assignable Unit — extensions
(see section 5.5.5 CSF Extension Mechanism)
5.8.10 Assignable Unit —auAlias

Element auAlias provides a reference to a previously defined assignable unit to avoid the
need to reduplicate identical au definitions within ablock structure. See section 5.5.3.

5.9 Objectives

At the highest level, course objectives are statements of skills, knowledge, and attitudes
to be acquired by the student. Within the CSF, the objectives group provides the means
for identifying objective titles, descriptions, prerequisites, completion requirements, etc.

SCORM (1.0) Page 39

ADL Sharable Courseware Object Reference Model

= ° 0lobalProperties

gL Dlock ~ |
Bcourse gy
i 2 objectives [g + objective ~ |

Csource 1=
W cxternalVetadata MM rmodel - =]

location — 4= |
gL essignmentRef - jj__ |

e ~ B=]
B idenifcation 18 7 description - I=]
[curricular - B=]

? labels H
=
B orercquisites - A= TL202ve2 s

m 2 completionReq ~ [g=1|
| 2 source ~ I
| model ~ I |

? location ~ |

“name ~_1=]
[propers =i

=l * extensions

w * objective ~li

objectiveAlias ~

|

|

Figure 5.9a — Objectives XML DTD structure [no notation = one element required; “?” = zero or one
(optional); “+" = one or more required; “*” = zero or more required]

These statements of objectives may be hierarchically nested (or ssimply listed) and may
include explicit references to specific course elements within the assignments hierarchy.
This permits an LM S to track the completion status of objectives and, thus, provide a
means for the LM S to determine appropriate paths through course content.

Note: Theroot of the objective structure is the objectives (plural) element and is not in
itself an objective (singular). All actual objective elements occur somewhere under the
objectives root. The reason for this construct is that objectives may be asingle, “flat” list
of objectives, ahierarchy of objectives, or both. The top-level objectives e ement
provides a specific place to “hang” objective elements, regardless of the underlying

structure.

5.9.1 Objective —externalMetadata

This optional external M etadata subel ement offers course devel opers the opportunity to
more fully describe objectives blocks throughout the objectives hierarchy. At this time,
no defined current practice for applying metadata to objectives exists; therefore, this
category exists mainly for consistency with the rest of the CSF model with the
expectation that it will provide a potential, future value yet to be defined.

SCORM (1.0)

Page 40

ADL Sharable Courseware Object Reference Model

5.9.2 Objective —assignmentRef

This element is used to “point” to a particular block or au in the content hierarchy. The
term “assignment” is used to refer to either ablock or assignment unit. It ties a particular
objective to a specific part of acourse. See section 5.5.3.

5.9.3 Objective —identification

This element provides context-specific information about a block including title,
description, curricular label, and developer label. See section 5.5.4.

5.9.4 Objective — prerequisites

This element defines what portions of a course must be completed before this element’s
parent may be started. See section 5.5.2.

5.9.5 Objective — completionReq

This element defines what portions of a course must be completed before this element’s
parent is considered to be “complete.” See section 5.5.2.

5.9.6 Objective — extensions

(see section 5.5.5 CSF Extension M echanism)

5.9.7 Objective —objectiveAlias

Element objectiveAlias provides a reference to a previously defined objective to avoid the
need to duplicate identical objective definitions within an objectives structure. See

section 5.5.3.

5.10 CSF Element Definitions/Descriptions

assignmentRef

Reference to a particular element in the assignment
hierarchy; e.g., <assignmentRef relation="satisfied
by"targetiDs="B1,A23"/>

Relation =
(reserved)
TargetlDs: List of
Identifier Refs

au AU is the smallest element of instruction or testing to which Id = Identifier Value;
a student may be routed by a LMS. It refers to "content" must start with “A”
launched by the LMS system. This holds a unique (to this
course) ID identifier for a particular au. ID's are generated by
the application (e.g., an LMS) that creates a CSF XML file
(other elements may refer to this unique ID)

auAlias Reference to a previously defined au (permits one au to be Targeted = Identifier
used more than once within a course) Value

block A grouping of related structural elements. Blocks contain Id = Identifier Value;

either assignable units or other blocks or both. Blocks

Default =

SCORM (1.0)

Page 41

ADL Sharable Courseware Object Reference Model

always contain other course elements. This holds a unique
(to this course) ID identifier for a particular block. IDs are
generated by the application (e.g., an LMS) that creates a
CSF XML file (other elements may refer to this unique ID)

REQUIRED

blockAlias

Reference to a previously defined block (permits one block
to be used more than once within a course)

Targeted = Identifier
Value

completionReq

Course elements that a student must complete before
considering a given structure element complete. It uses a

Type = Character
Data,

"script” that defines the logical rules to be applied. The script | Value = CDATA
type must be defined (e.g., <completion type="aicc_script">
<I[CDATA[B1&B2&A1]]> </completion>)

course Root level of Course Structure representation

curricular Local name of course element(e.g., "UNIT", "MODULE," PCDATA
"LEARNING STEP")

curricularTaxonomy Organizational methodology used to construct the course PCDATA

dataFromLMS Unconstrained (undefined) initialization data expected by PCDATA
content when it is launched by the LMS

description Contextspecific textual information about the course PCDATA
element. It may contain the purpose, scope, or summary.
(Defined by course author)

developer Developer label: an organization-specific identifier (e.g., PCDATA
D509)

extensions Defines extensions to course element definitions and their
source

externalMetadata The value of this element refers or points to the location of
the metadata describing this course

globalProperties Properties of the course as whole

identification Identifies course contextspecific information

labels Contextspecific local label (e.g., unit, chapter, learning step)

launch Information needed by an LMS to launch an au

location URL Location PCDATA

masteryScore Tells LMS how to compute the score returned by LMS; PCDATA
defines the passing score for this au in this context

MaxTimeAllowed ** maxTimeAllowed: The amount of time the student is PCDATA
allowed to have in the current attempt on the lesson (Format TBD)

model Name of a specific data model used by this course (e.g., PCDATA
“"cmi", or "ARMY314", or "IMS v1.0")

name Descriptive name of a course property extension (e.g., PCDATA
"difficulty," as in degree of)

objective A statement of skills, knowledge, and aptitudes to be id = Identifier Value;

acquired by the student. This holds a unique (to this course)
ID identifier for a particular objective. IDs are generated by
the application (e.g., an LMS) that creates a CSF XML file
(other elements may refer to this unique ID)

Must start with “O”

objectiveAlias

Reference to a previously defined objective (permits one
objective to be used more than once within a course)

targetID = Identifier
Ref

objectiveRef Reference to a particular objective in the objective hierarchy | relation = (reserved)
targetIDs = List of
Identifier Refs
objectives Root level of objectives tree; statements of skills,
knowledge, and aptitudes to be acquired by the student
SCORM (1.0) Page 42

ADL Sharable Courseware Object Reference Model

parameterString String of characters needed to successfully launch a content | PCDATA
au

prerequisites Expression indicating what a student must accomplish type = Character
before beginning this course element. Course elements that | Data;;
a student must complete before beginning a block or value=CDATA

assignable unit. It uses a "script" that defines the logical
rules to be applied. The script type must be defined. e.g.,
<prerequisites type="aicc_script"> </[CDATA[B1&B2&A1]]>

</prerequisites>
property Name/value pair extension for this course
source Authority or source of data model w/reference to a spec. If PCDATA

available e.g., "AICC AGRO10 v3.4", or ARMY TRADOC
spec123, or "IMSBP v4.2"

timeLimit Time values or actions associated with this au in this context
timeLimitAction What the lesson is to do when the max time allowed is type = Character
exceeded. AICC examples: "exit", "continue", "message". Data;
value = PCDATA
title Context specific title. May be used by an LMS system in PCDATA
menus, screens, etc.
value Value associated with the named extension e.g., "easy" PCDATA

SCORM (1.0) Page 43

ADL Sharable Courseware Object Reference Model

5.11 Examples

The following examples are intended to illustrate CSF concepts and, for clarity purposes,
include a much smaller number of elements than would exist in atrue CSF record.

5.11.1 Most Simple Example of CSF Record

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE course SYSTEM "fil e: scornesf(1.0).dtd" >
<course>
<l--*** This is the smallest possible valid CSF record
It has only one assignable unit (au) and lists only a title-->
<bl ock>
<au id="Al">
<identification>
<title>A Really, Really Small Course Chunk Pointing to Nothing</title>
</identification>
</ au>
</ bl ock>
</ cour se>

5.11.2 Simple Example Pointing to Content

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE course SYSTEM "file:scorncsf(1.0).dtd " >
<course>
<l--*** Tg the small CSF record exanpl e here is added reference to external content-->
<bl ock>
<au id="Al">
<identification>
<title>A Really, Really Small Course Chunk Pointing to Sonething</title>
</identification>
<l aunch>
<l ocation>http://wmv not much. coni smal | chunk. ht M </ | ocat i on>
</ | aunch>
</ au>
</ bl ock>
</ cour se>

5.11.3 Example of Course with One Block

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE course SYSTEM "file:scorncsf(1.0).dtd >
<cour se>
<l--*** This is an exanple of a course with one bl ock
contai ning two assignable [nee atomic] content units.-->
<bl ock>
<bl ock id="Bl">
<identification>
<title> ntroduction to Blocks 101</title>
<description>This is a sinple block of course elenents; not nuch to build with
yet. </ descri pti on>
</identification>
<au id="A1">
<identification>
<title>Building Wth Atoms</title>
</identification>
</ au>
<au id="A2">
<identification>
<title>Splitting Atoms Wth Hairs</title>
</identification>
</ au>
</ bl ock>
</ bl ock>
</ cour se>

SCORM (1.0) Page 44

ADL Sharable Courseware Object Reference Model

5.11.4 Example of Course with Blocks Within Blocks

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE course SYSTEM "file:scorncsf(1.0).dtd " >
<cour se>
<l--*** This is an exanple of a course with one bl ock, containing two bl ocks,
each with two assignable [nee atom c] content units.-->
<bl ock>
<bl ock id="B1">
<identification>
<title>Building Big Things From Snall Things</title>
<description>This | esson is about content aggregation</description>
</identification>
<bl ock id="B2">
<identification>
<title> ntroduction to Bl ocks 101</title>
<description>This Unit is about splitting and fusing atons</description>
</identification>
<au id="Al">
<identification>
<title>Building Wth Atons</title>
</identification>
</ au>
<au id="A2">
<identification>
<title>Splitting Atons Wth Hairs</title>
</identification>
</ au>
</ bl ock>
<bl ock id="B3">
<i dentification>
<title>Introduction to Leggo Bl ocks 107</title>
<description>This Unit is about Leggo Bl ocks</description>
</identification>
<au id="A4">
<identification>
<title>Building Wth Leggo Bl ocks</title>
</identification>
</ au>
<au id="A5">
<identification>
<title>Connecting Leggos Together</title>
</identification>
</ au>
</ bl ock>
</ bl ock>
</ bl ock>
</ cour se>

SCORM (1.0) Page 45

ADL Sharable Courseware Object Reference Model

5.11.5 Multi-Tiered Example (Seven Levels)

Note: This exanple is not really a valid CSF record since it omts sonme required el enments
for clarity. Nonetheless, it illustrates deep nesting of levels, or tiers.

<cour se>
<gl obal Properties>
<ext er nal Met adat a>
<l ocat i on>ar ny_cour seMet adat a. xm </ | ocat i on>
<nmodel >need exanpl e her e</ nodel >
<sour ce>need exanpl e here</source>
</ ext er nal Met adat a>
</ gl obal Properties>
<bl ock>
<bl ock>
<identification>
<titlel/ >
<| abel s>
<curri cul ar >COURSE</ curri cul ar >
<devel oper >ATSC</ devel oper >
</ | abel s>
</identification>
<bl ock>
<identification>
<titlel>
<l abel s>
<curricul ar >MODULE</ curri cul ar>
<devel oper >ATSC</ devel oper >
</ | abel s>
</identification>
<bl ock>
<identification>
<titlel/ >
<| abel s>
<curricul ar>LESSON</ curri cul ar >
<devel oper >ATSC</ devel oper >
</ | abel s>
</identification>
<bl ock>
<identification>
<titlel/>
<| abel s>
<curri cul ar >LEARNI NG OBJECTI VE</ curri cul ar >
<devel oper >ATSC</ devel oper >
</ | abel s>
</identification>
<au>
<identification>
<l abel s>
<curricul ar >LEARNI NG STEP</ curri cul ar >
</ | abel s>
</identification>
<ext er nal Met adat a>
<l ocati on>ARMY MEDI A REPCS| TORY</ | ocati on>
</ ext er nal Met adat a>
</ au>
</ bl ock>
</ bl ock>
</ bl ock>
</ bl ock>
</ bl ock>
</ cour se>

SCORM (1.0) Page 46

ADL Sharable Courseware Object Reference Model

5.12 Conformance Testing

A CSF record is expected to be created from within an LM S or course-authoring
environment. Within that environment, a course may have its own internal representation
of course structure and its related elements. A conforming LMS or course creation
environment is expected to map its interna representation to a valid CSF record (as
defined by the SCORM CSF DTD).

Similarly, a conforming LMS or authoring environment is expected to read and correctly
interpret the SCORM CSF format and map the contents of the CSF to its internal
representation as required. The course should then execute as intended.

Conformance testing, therefore, focuses on testing CSF files that are generated by an
LMS or authoring tool and verifying that the resulting CSF is able to be read and
correctly interpreted by another LM S or authoring tool.

First, generated CSF records must be validated against the DTD. Next, they must be
tested for “adequacy.” As the examplesin this document show, it is possible to produce
valid CSF records that are not, in fact, adequate to define a course. Specific criteriais
expected to be developed that defines the necessary elements and whether the values of
those elements adequately define a course. These criteriawill constitute the conformance
“policy” for a particular community of users.

An additional set of conformance tests will be developed using dummy course examples
that can be created in one environment, exported to the CSF, and imported to another
environment. Such dummy examples are to be designed to test particular course behavior
and to determine whether the CSF correctly captures that behavior. A simpletest, for
example, would be for an LMS or authoring tool to generate a CSF format and then read
it back in. Having read it back, the course should behave exactly as before.

In summary, conformance testing consists of verifying that a CSF record is valid (against
the DTD) and adequate to represent a course, and that LM S or authoring tools correctly
implement the basic mapping from internal representation to the intermediate CSF (and
back again).

Details and test criteria are expected to be developed in future versions of this document.

5.13 Sample Course Mappings

This section will contain fragments of existing courses as they would be represented in
the CSF format.

SCORM (1.0) Page 47

This page was intentionally |eft blank.

6. Runtime Environment
6.1 Overview

A requirement of the SCORM is that learning content be reusable across multiple LM Ss
regardless of the tools used to create the content. For this to be possible, there must be a
common way to start content, a common way for a content to communicate with an LMS,
and predefined data elements that are exchanged between an LM S and content during its
execution. These three processes are defined in this document as Launch, API
(Application Program Interface), and Data Model.

Server

External systems:
Content Server(s) HR, E-Commerce, ERP...
] [Mi ration

Adapter] Services or Adapter

Learning Server

Adapter
,4 | Server Side

Data Model
Actual data sent
back and forth
between content

and LMS —>

Client Side

1\
=

APL T \

Launch
(starts content)

API .
Adapter

I
|}
'-
)
)
)
1

:
I
HTML+ |
1

(Communications link

between content and LMS) Content
(Assignable
Unit)

Figure6.1la—Launch, API, and Data Model asthey apply to the SCORM architectural view.

The Launch mechanism defines a common way for LM Ss to start Web/browser-based
content. This mechanism permits the content to locate the means to communicate back to
the LM S with status and tracking information. The communication takes place using a
common API. The API is the vehicle for informing the LMS of the state of the content
(e.g., initialized, finished, or errors), and is used to get and set data between the LMS and
the content (e.g., score, time limits).

SCORM (1.0) Page 49

ADL Sharable Courseware Object Reference Model

A Data Model is a predefined list of data elements used to track the status of content. In
its ssimplest form, the data model defines elements that both the LM S and content are
expected to “know” about. The LMS must maintain the status of required data elements,
and the content must use only these data elements if reuse across multiple systemsisto
occur.

6.2 SCORM and the AICC API Specification

The SCORM s based directly on the runtime environment functionality defined in
Appendix B, “API-Based CMI Communication” of AICC’'s Document CMI1001, “AlICC
CMI Guidelines for Interoperability (Revision 3.0.1, Release 24 November 1999.”) This
specification is also included as Appendix B of this document.

ADL collaborated with AICC members and participants to develop a common Launch
and API specification and to adopt Web-based data el ements from the complete set
defined in the AICC’'s Semantic Document v3.0 (CMI-Sem30.doc). This document is
available from the |EEE Learning Technology Standards Committee (LTSC) Web page
at http://www.manta.ieee.org/pl484.

The following sections provide an overview of the key elements of the AICC API
specification as they relate to the SCORM.

6.3 API Adapter

The SCORM assumes that an LM S will supply an APl Adapter that implements some
kind of communications transport between the server-side LM S and the client. This
adapter must shield content from the particular adapter implementation details so that
content (assignable units) need not have any knowledge of the underlying
communications infrastructure, and instead, relies solely on the existence of a
standardized Application Program Interface (API).

For example, an APl adapter might be implemented as a Java applet that looks similar to
the following:

public class APl extends applet {
private static LMSErrorManager | nsErrorManager;
private static LMSCoreData | nsCoreDat a;
private static AUCoreData auCoreDat a;
private static boolean is LMSInitialized,
private URL servlet URL
public void init()

..
public String LMSInitialize(String param
{ . . .}

public String LMSGet Val ue(String el enent)

{. .1

public void LMSSetVal ue(String elenment, String val ue)
{. . .}

SCORM (1.0) Page 50

ADL Sharable Courseware Object Reference Model

public void LMSConmi t ()

{ }

{. }
{ }

(...}

Note that an API adapter can be implemented in other languages, such as C++, and

pubi [c String LMSGetLastError()

public String LMSGetErrorString(String errorCode)

public String LMSGetDi agnostic(String errorCode)

loaded as a plug-in. The API adapter implementation is expected to be LM S vendor
specific; the above code fragment is only an example approach.

The following diagrams illustrate several different possible implementation approaches

for implementing an LMS API adapter:

Example 1 - Learning Management System (LMS)
using Java Applet for APl Adapter and Java
Servlets for Server Adapter implementation.

Learning
Content
HTML &
JavaScript

Example 2 - Learning Management System (LMS)
using ActiveX for API Adapter and Active Server
Pages and COM (Common Object Model)
Component(s) for Server Adapter implementation.

Learning
Content
HTML &
JavaScript

LMS

API
ActiveX

Persistence |« Java)
Servlet(s) - Active
Persistence |«
Server CoM
Pages
SCORM (1.0) Page 51

ADL Sharable Courseware Object Reference Model

Example 3 - Learning Management System (LMS) Example 4 — Learning Management System (LMS)
with Shockwave Plug-in for Shockwave Learning using Java Classes for API Adapter and CORBA
Content and using JavaScript for API Adapter and (Common Object Request Broker) Component(s)
CGI (Common Gateway Interface) Programs or implemented in Java and/or C++ for Server Adapter
scripts for Server Adapter implementation. implementation.
Browser
Shockwave Browser
Web Learning
Player Plug-in ﬁgr,\‘,ltfrg
Authorware/ API -avascript
Shockwave JavaScript
App
Object Request
Persistence |« cal Persistence Broker
- Programs/ o s
Scripts h
LMS LMS
Web Server Web Server

6.4 Content Launch

During the development of the AICC API specification and the ADL SCORM, AICC,
|EEE and ADL participants examined the various possible approaches to launching
content and initializing communications with LM S environments. Many methods were
proposed, but most were either too complex or poorly supported in today’s Web
environment. Finally, acommon approach was proposed (with many thanks to Claude
Ostyn) that is relatively simple for content authoring tools to support and is broadly
implementable with today’ s browser technology.

Very nearly all browsers—and certainly all of the popular ones—natively support
JavaScript. (The more accurate term is actually ECMA Script, which is the official
standard name of JavaScript.) The launch scheme described in Appendix B requires an
LMS to launch content from a window that contains a common APl implementation (or
aternatively, to provide a parent frame that contains the APl). The APl is accessible
through JavaScript calls. This ensures that content is “wrapped” with the means to
establish communications with the LM S once it begins to execute.

SCORM (1.0) Page 52

ADL Sharable Courseware Object Reference Model

<head>

<META htt p- equi v="expi res" CONTENT="Tue, 20 Aug 1999 01:00: 00 GMVI">
<META htt p-equi v="Pragma" CONTENT="no-cache">

<title>ADL Sanple LMs</title>

<franmeset COLS="275, *">

<frame id="LMSFrame" src="LMSFrane. htni>

<frame id="Content" src="LMsStart.htni>
</ franeset >

</ head>

</ SCRI PT> /1 LNMSFrame. htm

<body> </ HEAD>

<BODY styl e=" BACKGROUND- COLOR: | enponchi f fon">

<P al i gn=cent er ><APPLET code=API . cl ass hei ght =0 i d=API nanme=API
wi dt h=0 MAYSCRI PT="tr ue" > ?

</ APPLET>

The content (assignable unit), which may be arbitrarily small and ssmple or relatively
complex, “connects’ to an APl object to establish communications. Content obtains the
API object by checking for its existence on any parent window or the opener window.
The following JavaScript example from section B. 2.3.1 of the AICC API specification in
Appendix B illustrates how content might locate the API.

/'l returns the LMS APl object (may be null if not found)
Fi ndAPI (wi n)

{
if (win. APl 1= null)
return win. APl ;
else if (win.parent == null)
return null;
el se
return Fi ndAPI (wi n. parent);
}

/1 obtain the LMS API
APl = Fi ndAPI (wi ndow) ;
If (APl == null)
APl = Fi ndAPI (wi ndow. opener);

Aslong as content contains a binding to the defined API object, an LM S can launch and
track its execution, regardless of the tool used to create it; thus, one key function that
enables reuse is provided.

6.5 Application Program Interface (API)

The use of acommon API fulfills many of the SCORM'’s high-level requirements for
interoperability and reuse. It provides a standardized way for content to communicate
with learning management systems, yet it shields the particular communications
implementation from the content developer. How the “insides’ of an APl are
implemented should not matter to content developers provided they use the same

SCORM (1.0) Page 53

ADL Sharable Courseware Object Reference Model

“outside” interface. An APl “hides’ implementation details from content and, therefore,

promotes reuse and interoperability.

A key aspect of the AICC API isthat it isinvoked only from within content. It is

assumed that once Web-based content is launched, it can then “get” and “set” information

with an LMS. The functions of this APl are threefold:

1. Execution State: The API hasinitialize() and finish() function calls that tell the

LMS that the content is present and active (“I'm here! I’'m running!”), or that it
has completed and ended (“I’ ve stopped, and I’'m no longer here.”). These are the
only two required API calls that content must make. This means that an
extremely simple piece of content, such as a media clip, would only need to be
“wrapped” with enough code to embed an initialize() and finish() in order to
interoperate across multiple LM S environments. Even large “chunks’ of content
might only have these two calls if no other information or data need to be tracked
by the LMS. (Thisisn't likely for robust learning content; however, it is possible
and provided for.)

. State Management: The API has four functions that are used to handle errors
and to force atransfer of cached information back to an LMS. These four API
calsare: LMSGetLastError(), LMSGetError String(errornumber),
LMSGetDiagnostic(parameter), and LMSCommit(parameter).

. Data Transfer: The remaining two API functions are used to transfer data to and

from an LMS: LMSGetValue(cmi.category) and LM SSetValue(cmi.category,
value). Note that the APl is designed to get and set data values that are separately
defined by an external data model. The AICC specification defines one such data
model here (and in the AICC document referenced in section 6.2), called “cmi.”
Other data models could be developed and used with this API as well; thus, the
AICC specification in Appendix B has been designed to be generic. The AP
does not “know” about what specific data that it can set or get.

The following code example illustrates how API calls could be embedded within an
HTML page using JavaScript. Thisis only one possible way to use the API; there are
other approaches depending on the type of content.

<SCRI PT LANGUAGE=JAVASCRI PT >
function | oadPage()

{
LMSInitialize();
getStartTime();
LMSSet Val ue("cmi.core.score. max", "5");
LMSSet Val ue("cmi.core.score.mn", "0");

var student Nane = LMSGet Val ue
("cm .core.student _nanme");

Note: SéeAbpendix B for detailed API definitions and datatypes.

SCORM (1.0) Page 54

ADL Sharable Courseware Object Reference Model

6.5.1 API Table (from AICC CMI 3.0.1, Appendix B)

Function Description API Call Return Value
Initialize The content must call this function before calling any other | LMSinitialize() A string convertible to
API function. It indicates to the LMS system that the CMiIBoolean
content is going to communicate. The LMS can take any
initialization steps required in this function.
Finish The content must call this function before it terminates, if it | LMSFinish() None
successfully called LMSiInitialize at any point. It signals to
the LMS that the content has finished communicating. The
content may not call any API function except
LMSGetLastError after it calls LMSFinish
Get a value This is used to determine values for various categories and | LMSGetValue(dataModel.category) A string convertible to
elements in the CMI data model. Only one value is LMSGetValue(dataModel.category.element) appropriate data type
returned for each call. The category and/or element is
named in the argument.
Set a value This is how data categories and elements get values. The LMSSetValue(dataModel.category, value) None
argument indicates which category or element is being set. | LMSSetValue(dataModel.category.element,
Only one value may be set with a single function call. value)
Send cache to If the ECMAScript is caching LMSSetValue values, this call | LMSCommit(parameter) None

LMS

requires that any values not yet sent to the LMS be sent.

Determine error
code

The content must have a way of assessing whether any
given API call was successful, and if it was not successful,
what went wrong. This routine returns an error code from
the previous API call. Each time an API function is called
(with the exception of this one), the error code is reset in
the API. The content may call this any number of times to
retrieve the error code, and the code will not change until
the next API call.

LMSGetLastError()

A string convertible to
CMlinteger

Obtain text related
to error

This function enables the content to obtain a textual
description of the error represented by the error code
number.

LMSGetErrorString(errornumber)

CMIString256

Determine vendor-
specific
diagnostics

This function enables vendor-specific error descriptions to
be developed and accessed by the content. These would
normally provide additional helpful detail regarding the
error.

LMSGetDiagnostic(parameter)

CMIString256

Security functions

-TBD-

SCORM (1.0)

Page 55

ADL Sharable Courseware Object Reference Model

6.6 Further Defining Content as “Assignable Units” (AUs)

References to “content” and “assignable units’ in this document can be confusing at first.
This confusion is compounded by the additional use of “lesson” in the AICC documents
and within the CMI data model. All of these terms have roots in historical practices, but
from different groups and organizations. Each group has a dightly different intended
meaning for these and other terms. This section attempts to clarify the SCORM concepts
associated with learning content.

In an important sense, the terms “lesson” and “assignable unit” both refer to client-side
content. For client-side content to qualify as an assignable unit, however, it must meet
certain minimum requirements, as explained below.

6.6.1 Content as a “Lesson”
“Lesson” has multiple definitions in the AICC CMI Specification, including:

A meaningful division of learning that is accomplished by a student in a
continuous effort —that is at one sitting. That part of the learning that is
between designed breaks. Frequently requires approximately 20 minutes to an
hour.

A grouping of instruction that is controlled by a single executable computer
program

A unit of training that isalogical division of a subchapter, chapter, or course

In a Web-based environment, a “unit of training” is likely to be made of many content
pieces and is less likely to be contained within a single executable computer program;
therefore, “lesson” is a somewhat imprecise term that is subject to broad interpretation.
The term persists, however, within the CMI data model (see section 5.1 of the CMI
Guidelines for Interoperability, revision 3.0.1) for communications between content and
LMSs.

6.6.2 Content as an “Assignable Unit”

Theterm “assignable unit” (AU) aso hasits roots in the AICC CMI specification,
especialy related to representing course structure. The term continues to be used in the
SCORM document both in the Course Structure (section 5) and this section, but the
definition has been narrowed in this document.

AICC defines an assignable unit to be both:
The smallest unit the CMI [LMS] system assigns and tracks

A program or lesson launched by the CMI [LMS] system.

Three concepts are embedded here. First, an AU is small and stand-alone. Second, an
LMS launches an AU on the client-side. Findly, the LMS tracks the AU.

SCORM (1.0) Page 56

ADL Sharable Courseware Object Reference Model

The notion of “smallness’ is subjective. A more useful way to look at an assignable unit
isthat it has (by definition) no separate child content components and is, thus, indivisible.
An AU could be avery large executable programor an HTML file with just a single
letter of text. Provided both examples implement the API correctly, either could be
launched and tracked by an LMS.

6.6.3 SCORM “Assignable Unit” Definition

In this document the definition of “Assignable Unit” is extended to be an arbitrarily large
or small piece of client-side content that, at a minimum, containsan Initialize() and a
Finish() API call, and has ameans to locate an APl adapter (such as an APl “wrapper” as
described in sections 6.4).

Thus, an assignable unit is content, but content isn’t (in this context) an assignable unit
unlessit implements the API. Note, however, that there is no obligation to implement any
of the other API calls; those are optional and depend on the nature of the content;
however, the assignable unit must implement Initialize() and Finish() calls to conform to
the SCORM.

The requirement that an assignable unit must implement the API yields the following
benefits:
Any LMS that supports the API can launch assignable units and track
them, regardless of who generated them
Any conforming LMS can track any assignable unit and know when it has
begun or ended
Any conforming LMS can launch any assignable unit in the same manner.

6.6.4 Defining a “Sharable Courseware Object” as an Assignable Unit

Because they are required to consistently implement the API in order to enable reuse,
assignable unitsreally are “ Sharable Courseware Objects’ (SCO). We continue to use
the term “assignable unit” due to its AICC heritage, but in this document, AUs meet the
requirements of an SCO as defined in section 4.1 of this document.

6.6.5 Small “Sharable Courseware Objects”

As discussed above, assignable units (a.k.a., SCOs) technically can be any size; however,
it is the specific intention of the SCORM to guide people toward the development and
use of relatively small content pieces that are suitable for reuse over time. During course
design, thought should be given to the smallest logical size of content that might be
reused. Such content could then form the basis of content repositories.

SCORM (1.0) Page 57

ADL Sharable Courseware Object Reference Model

6.6.6 Content Sequencing Control

An implicit assumption in the SCORM is the notion that the sequencing of content (i.e.,
the order in which content is presented to the student) is controlled solely by the LMS.
Thisis amaor departure from the way courseware has been developed using stand-alone,
computer-based instruction (CBT). In the past, courseware content typically embedded
all of the navigation information that governs what part of the course the student next
views. In nearly all cases, the way in which course sequencing was defined has been
unique to the authoring system used to construct the course; thus, it was (and still is)
difficult or impossible to share content between different authoring environments.

Within the SCORM, which is deliberately Web-based, flow control is assumed to be on
the LM S and not within the content itself. Thisis conceptually important because
content reuse can't really happen if the content has embedded information that is context
specific to the course. In this context, flow control, means that the decision of what
content (AU) will next be presented to the student is made by the LMS. (This recognizes
that some content may make decisions — that is, branch — within itself, but that kind of
internal flow is hidden from the LMS.

The determination of what the student experiences is determined solely by the LMS and
is defined in large part by the Course Structure Format defined in section 5 of this
document. Section 5 defines the information about content that is context specific to the
course (e.g., the default sequence of content, prerequisites that might alter the delivery
path).

Summary Points. Inthe SCORM, a content assignable unit may only be launched by an
LMS. An assignable unit may not itself launch other assignable units. An assignable
unit must, at aminimum, contain an initialize() and afinish() API call to conform with
the SCORM.

Content information independent of a particular course, such as its generalized title and
description, intended use, and technical data type, is contained in separate XML metadata
records (see section 7). Such datais considered “immutable” in that it doesn’t change
from use to use but is nonetheless critical to discovery (e.g., from within a content
repository) and subsequent incorporation into courses.

6.6.7 Toward Adaptive And Intelligent Tutoring

The development of small, reusable, and interoperable pieces of learning content, and the
shift of content flow control from the client-side to the server-side establishthe basis for
entirely new learning technologies.

The most obvious benefits of sharability and reuse are the possibility of large content
repositories and the development of a new “content economy” where Sharable
Courseware Objects are traded widely.

SCORM (1.0) Page 58

ADL Sharable Courseware Object Reference Model

An even more interesting prospect is the development of complex learning management
systems that can assemble, reorder, and redefine learning content to fit the real-time
needs of the student. Unfortunately, the lack of reusable and resequenceable content has
delayed this vision from becoming reality. It is a specific purpose of the SCORM to
provide a starting point for the next generation of advanced learning technologies that can
(at least in theory) be highly adaptive to student needs.

6.7 “CMI” Data Model

The purpose of establishing a common data model is to ensure that a defined set of
information about content can be tracked by different LM S environments. If, for
example, it is determined that tracking a student’s score is a general requirement, it is
necessary to establish a common way for content to report scores to LMS environments
to process. If pieces of content use their own unigue scoring representations, learning
management systems would not know how to receive, store, or process the information.

The data model in this section is defined as the “CMI” data model because it is derived
directly from the AICC CMI specification. This model was chosen for inclusion in the
SCORM because it iswell defined and has been implemented in the past. The data
model specified by AICC in Appendix B omits some of the elements that applied to
earlier versions of the AICC specification. Section B.8 of Appendix B presents a table of
the differences between the original CMI data model and the one incorporated in this
section, along with the rationale for the differences.

It is expected that other data models may be defined in the future. It is for this reason that
al of the elementsin this section begin with “cmi.” This signals implementers that the
AICC data model isin use. Alternative data models, if developed, would begin with a
different designation (e.g., adl.elementName instead of cmi.elementName).

Three categories of data elements are defined in this section and in more detail in
Appendix B. (Note that Appendix B is the controlling specification.)

1. LMSto Content (AU) Communications
2. Content (AU) to LMS Communications
3. Evauation Data Collection.

The LM Sto Content (AU) Communications data set includes elements such as
student_id, student_name, lesson_status, and score. The AICC document also specifies
which elements require mandatory implementation by an LMS, and which are optional.
(For conformance testing purposes, those elements defined as optional must comply with
the specification if they are implemented by the LMYS).

The Content (AU) to LM S Communicationsdata set is ssimilar (and mostly
symmetrical) with LM S to Content but contains some differences that make contextual
sense. (Some data elements logically originate with content only.) Unlike the
requirements on the LM S side, all data elements are “optiona” on the content side. This
is because content may be extremely small and “not very smart.” Asaresult, some

SCORM (1.0) Page 59

ADL Sharable Courseware Object Reference Model

chunks of content might not be designed to be tracked in detail; however, if they areto be
tracked, they must conform to a common data model for reusability across multiple LMS
environments.

The AICC has determined that the third data set, Student Data Collection, is*“optional”
for both LM S environments and content (from a conformance testing point of view).
These data elements were developed so that an LM S system could evaluate the student’s
performance. Examples of data elements in this category include student comments,
information about a student’ s performance on lesson objectives (such as mastery time),
and the path through the content.

6.7.1 “CMI” LMS to Content (AU) Data Model

The following table represents a subset of the Data Model defined in the AICC CMI 3.0.1
document, which aso contains more complete definitions for each term. A more
complete version of thistableisin section B.4 of Appendix B. Note that all element
names are preceded by “cmi” to identify their membership in the AICC “CMI” data
model.

The LMS obligation column represents the obligations of the LMS, not the learning
content. All data elements are optional for content AUs. Assignable units are required
only to use Initialize() and Finish(); they are not required to use LMSSetvalue() or
LMSGetValue(). Thisiswhy all data model elements are “optiona” for content.

This table summarizes the data that an assignable unit may request or “get” from the
learning management system. All of these elements are obtained using the
LM SGetV alue(elementName) API call.

Element Name “CMI” DATA MODEL - Contextualized Definition LMS
LMS to Content (AU) Communications Obli-
gation

|--student_id Unique alpha-numeric code/identifier that refers to a single user of | Man

the CMI system.
LMSGetValue(“cmi.core.student id”)

|--student_name Normally, the official name used for the student on the course Man
roster. A complete name, not just a first name.
LMSGetValue(“cmi.core.student_name”)

|--lesson_location This corresponds to the lesson exit point passed to the CMI Man
system the last time the student experienced the lesson.
LMSGetValue(“cmi.core.lesson location”)

[--credit Indicates whether the student is being credited by the CMI system | Man
for his performance (pass/fail and score) in this lesson.
LMSGetValue(“cmi.core.credit”)

|--lesson_status This is the current student status as determined by the CMI Man
system, and sent to the lesson when it is launched.
LMSGetValue(“cmi.core.lesson_status”)

[--entry Indication of whether the student has been in the lesson before. Man
LMSGetValue(“cmi.core.entry”)

SCORM (1.0) Page 60

ADL Sharable Courseware Object Reference Model

Element Name “CMI” DATA MODEL - Contextualized Definition LMS
LMS to Content (AU) Communications Obli-
gation
|--score Indication of the performance of the student during his last attempt | Man
on the lesson. LMSGetValue(“cmi.core.score. children”)

[--|--raw Numerical representation of student performance in lesson. May Man
be unprocessed raw score. LMSGetValue(“cmi.core.score.raw”)

[--]--max The maximum score or total number that the student could have Opt
achieved. LMSGetValue(“cmi.core.score.max”)

[--]--min The minimum score that the student could have achieved. Opt
LMSGetValue(“cmi.core.score.min”)

|--total_time Accumulated time of all the student sessions in the lesson. Man
LMSGetValue(“cmi.core.time”)

|--lesson_mode Identification of student-related information that may be used to Opt
change the behavior of the lesson.
LSMGetValue(“cmi.core.lesson_mode”)

suspend_data Unique information generated by the lesson during previous uses, | Man
that is needed for the current use.

LMSGetValue(“cmi.suspend_data”)

launch_data Unique information generated at the lesson’s creation that is Man
needed for every use. LMSGetValue(“‘cmi.launch_data”)

comments Instructor comments directed at the student that the lesson may Opt
present to the student when appropriate.

LMSGetValue(“cmi.comments”)

|--course_id Alpha numeric sequence that provides a unique label for a course. | Opt
LMSGetValue(“cmi.evaluation.course_id “)

[--comments Identifies if the student’'s comments on a lesson can be collected Opt
and made available by the LMS in a separate file.
LMSGetValue(*cmi.evaluation.comments.)

|--interactions Identifies what detailed information of a student’s interactions in a | Opt
lesson can be collected.
LMSGetValue(“cmi.evaluation.interactions._children”)

|--objectives_ Identifies what detailed information on lesson objectives can be Opt

status collected.
LMSGetValue(“cmi.evaluation.objectives_status. children”)

[--path Identifies what detailed information can be collected on the path Opt
through the lesson taken by the student.
LMSGetValue(“cmi.evaluation.path. children”)

|--performance Identifies what detailed information can be collected, on the Opt
student’s performance in complex scenarios, such as simulations.
LMSGetValue(“cmi.evaluation.performance._children”)

[--id A developer defined, lesson-specific identifier for an objective. Opt
LMSGetValue(“cmi.objectives.n.id”)

|--scores The score obtained by the student after each attempt to master Opt
the objective. LMSGetValue(“cmi.objectives.n.scores. count”)

[--]--raw Numerical representation of student performance after each Opt
attempt on the objective. May be unprocessed raw score.
LMSGetValue(“cmi.objectives.n.scores.n.raw”)

SCORM (1.0) Page 61

ADL Sharable Courseware Object Reference Model

Element Name “CMI” DATA MODEL - Contextualized Definition LMS
LMS to Content (AU) Communications Obli-
gation
[--]--max The maximum score or total number that the student could have Opt
achieved. LMSGetValue(“cmi.objectives.n.scores.n.max”)
[--]--min The minimum score that the student could have achieved. Opt
LMSGetValue(“cmi.objectives.n.scores.n.min”)
|--statuses The status obtained by the student after each attempt to master Opt
the objective. LMSGetValue(“cmi.objectives.n.status.n”)
[--attempt_number | Number of times the student has been in, or previously used the Opt
lesson. LMSGetValue(“cmi.student_data.attempt_number”)
|--mastery_score The passing score, as determined outside the lesson. Opt
LMSGetValue(“cmi.student_data.mastery score”)
[--max_time_ The amount of time the student is allowed to have in the current Opt
allowed attempt on the lesson.
LMSGetValue(“cmi.student_data.max_time_allowed”)
[-- What the lesson is to do when the max time allowed is exceeded. Opt
time_limit_action | LMSGetValue(“cmi.student data.time_limit_action”)
|--attempt_records | Student’s performance after previous times in the lesson. Opt
LMSGetValue(“cmi.student_data.attempt_records._children”)
LMSGetValue(“cmi.student_data.attempt_records. _count”)
|--|--lesson_scores | The score obtained by the student after each previous attempt. Opt
LMSGetValue(“cmi.student data.attempt_records.n.lesson _score”)
[--]-- Indication of the status of the lesson after each attempt. Opt
lesson_statuses | LMSGetValue(“cmi.student_data.attempt_records.n.lesson_status”)
[--city Portion of student’s current address. Opt
LMSGetValue(“cmi.student _demographics.city”)
|--class A predefined training group to which a student belongs. Opt
LMSGetValue(“cmi.student demographics.class”)
[--company Student’s place of employment. Opt
LMSGetValue(“cmi.student_demographics.company”)
[--country Portion of student’s current address. Opt
LMSGetValue(“cmi.student demographics.country”)
|--experience Information on the student’s past that might be required by a Opt
lesson to determine what to present, or what presentation
strategies to use.
LMSGetValue(“cmi.student demographics.experience”)
|--familiar_name An informal title that may be used to address the student. Opt
LMSGetValue(“cmi.student_demographics.familiar_name”)
|--instructor_name | Name of the person responsible for the student’s understanding of | Opt
the material in the lesson.
LMSGetValue(“cmi.student demographics.instructor name”)
[--title Title of the position or the degree currently held by the student. Opt
LMSGetValue(“cmi.student_demographics.title”)
|--native_language | The language used in the student’s country of LMSGetValue Opt
(“cmi.student_demographics.native_language”)origin.
|--state Segment of a country, also called province, district, canton, etc. Opt
LMSGetValue(“cmi.student _demographics.state”)
|--street_address Portion of student’s current address. Opt
LMSGetValue(“cmi.student _demographics.street _address”)
SCORM (1.0) Page 62

ADL Sharable Courseware Object Reference Model

Element Name “CMI” DATA MODEL - Contextualized Definition LMS
LMS to Content (AU) Communications Obli-
gation
|--telephone Telephone number of a student. Opt
LMSGetValue(“cmi.student_demographics.telephone”)
|--years_ Number of years the student has performed in current or similar Opt
experience position.
LMSGetValue(“cmi.student_demographics.years_experience”)
[--audio Sound on/off and volume control. Opt
LMSGetValue(“cmi.student preference.audio”)
[--language Identifies in what language the information should be delivered. Opt
LMSGetValue(“cmi.student_preference.language”)
|--lesson_type Indicates suitability of preferences to current lesson. Opt
LMSGetValue(“cmi.student_preference.lesson_type”)
|--speed Pace of content delivery. Opt
LMSGetValue(“cmi.student_preference.speed”)
|--text Written content visibility control. Opt
LMSGetValue(“cmi.student_preference. text”)
|--text_color Written content foreground and background hue. Opt
LMSGetValue(“cmi.student preference.text_color”)
|--text_location Position of text window on the screen. Opt
LMSGetValue(“cmi.student preference.text location™)
|--text_size Magnitude of the written content characters on screen. Opt
LMSGetValue(“cmi.student_preference.text size”)
[--video Motion picture tint and brightness on the screen. Opt
LMSGetValue(“cmi.student_preference.video”)
[--windows Size and location of video, help, glossary, etc. windows. Opt
LMSGetValue(“cmi.student_preference.n.windows")
SCORM (1.0) Page 63

ADL Sharable Courseware Object Reference Model

6.7.2 “CMI” Content (AU) to LMS Data Model

The following table represents a subset of the Data Model defined in the AICC CMI 3.0.1

document, which aso contains more complete definitions for each term. A more

complete version of this table is provided in section B.5 of Appendix B. Note that al
element names are preceded by “cmi” to identify their membership in the “CMI” data

modd.

The LMS obligation column represents the obligations of the LMS, not the learning
content. All data elements are optional for content AUs. Assignable units are required

only to use Initialize() and Finish(); they are not required to use LMSSetValue() or
LMSGetValue(). Thisiswhy all data model elements are “optiona” for content.

This table summarizes the data that an assignable unit may send to the learning
management system. All of these elements are sent to the LMS using the
LM SSetVaue(elementName) API cdll.

Element Name “CMI” DATA MODEL - Contextualized Definition LMS
Content (AU) to LMS Communications Obli-
gation
|--lesson_location This identifies the point where the student leaves the lesson. Man
LMSSetValue(“cmi.core.lesson_location”, value)
|--lesson_status This is the student status when he leaves the lesson. Man
LMSSetValue(*cmi.core.lesson_status”, value)
[--exit An indication of how or why the student left the lesson. Man
LMSSetValue(“cmi.core.exit”, value)
|--score Indication of the performance of the student during his time in the Man
lesson.
[--|--raw Numerical representation of student performance in lesson. May Man
be unprocessed raw score.
LMSSetValue(“cmi.core.score.raw”, value)
[--]--max The maximum score or total number that the student could have Opt
achieved.
LMSGetValue(“cmi.core.score.max”)
[--]--min The minimum score that the student could have achieved. Opt
LMSGetValue(“cmi.core.score.min”)
|--session_time Time spent in the lesson during the session that is ending. Man
LMSSetValue(“cmi.core.time”, value)
suspend_data Unique information generated by the lesson, that is needed for Man
future uses. Passed to the CMI system to hold and to return the
next time the student starts this lesson.
LMSSetValue(“cmi.suspend_data”, value)
comments Student’s written remarks recorded during the current use of the Opt
lesson.
LMSSetValue(“cmi.comments.n “, value)
[--id A developer defined, lesson-specific identifier for an objective. Opt
LMSSetValue(“cmi.objectives.n.id”, value)
SCORM (1.0) Page 64

ADL Sharable Courseware Object Reference Model

Element Name “CMI” DATA MODEL - Contextualized Definition LMS
Content (AU) to LMS Communications Obli-
gation

[--scores The score obtained by the student after each attempt to master Opt
the objective.

[--]--raw Numerical representation of student performance after each Opt
attempt on the objective. May be unprocessed raw score.
LMSSetValue(“cmi.objectives.n.scores.n.raw”. value)

[--]--max The maximum score or total number that the student could have Opt
achieved.

LMSSetValue(“cmi.objectives.n.scores.n.max”, value)

[--]--min The minimum score that the student could have achieved. Opt
LMSSetValue(“cmi.objectives.n.scores.n.min”, value)

|--statuses The status obtained by the student after each attempt to master Opt
the objective.

LMSSetValue(“cmi.objectives.n.status.n, value)
|--tries_during_ Total number of efforts to complete the lesson or selected Opt
lesson segment.
LMSSetValue(“cmi.student data.tries during lesson”, value)

|--tries Data related to each try. Opt

|--]--score The score at the completion of each attempt. Opt

[--|--|--raw Numerical representation of student performance after each Opt
attempt on the objective. May be unprocessed raw score.
LMSSetValue(“cmi.student_data.tries.n.score.raw”. value)

[--|--]--max The maximum score or total number that the student could have Opt
achieved.

LMSSetValue(“cmi.student data.tries.n.score.max”. value)

[--]--]--min The minimum score that the student could have achieved. Opt
LMSSetValue(“cmi.student_data.tries.n.score.min”. value)

|--|--status The status of the lesson or segment after each attempt. Opt
LMSSetValue(“cmi.student_data.tries.n.status “, value)

[--|--time Length of time required for each attempt on a lesson or segment. Opt
LMSSetValue(“‘cmi.student data.tries.n.time “, value)

|--language Identifies in what language the information should be delivered. Opt
LMSSetValue(“cmi.student_preference.language”, value)

|--lesson_type Indicates suitability of preferences to current lesson. Opt
LMSSetValue(“cmi.student preference.lesson_type”, value)

|--speed Pace of content delivery. Opt
LMSSetValue(“cmi.student preference.speed”, value)

[--text Written content visibility control. Opt
LMSSetValue(“cmi.student preference.text”, value)

|--text_color Written content foreground and background hue. Opt
LMSSetValue(“cmi.student_preference.text color”, value)

|--text_location Position of text window on the screen. Opt
LMSSetValue(“cmi.student_preference.text location”, value)

|--text_size Magnitude of the written content characters on screen. Opt
LMSSetValue(“cmi.student preference.text size”, value)

|--video Motion picture tint and brightness on the screen. Opt
LMSSetValue(“cmi.student_preference.video”, value)

[--windows Size and location of video, help, glossary, etc. windows. Opt
LMSSetValue(“cmi.student_preference.n.windows", value)

SCORM (1.0) Page 65

ADL Sharable Courseware Object Reference Model

6.7.3 Student Data Collection

The following table represents a subset of the Data Model defined in the AICC CMI 3.0.1
document, which aso contains more complete definitions for each term. A more
complete version of this table is provided in section B.6 of Appendix B. Note that all
element names are preceded by “cmi” to identify their membership in the “CMI” data
modd.

The LMS obligation column represents the obligations of the LMS, not the learning
content. All data elements are optional for content AUs. Assignable units are required
only to use Initialize() and Finish(); they are not required to use LM SSetvalue() or
LMSGetValue(). Thisiswhy all data model elements are “optional” for content.

This table summarizes the data that an assignable unit may send to the learning
management system related to interactions with the student. All of these element values
are sent using the LM SSetV alue(elementName) API call.

This entire category of the data model is optional.

Element Name Student Data Collection Table LMS
Contextualized Definition Obli-
gation
lesson_id Alphanumeric label supplied by the developer. Opt
LMSSetValue(“cmi.evaluation.lesson id”, value)
date The calendar day on which the data is created. Opt

LMSSetValue(“cmi.evaluation.date”, value)

--time ndication of when the comment is made. p
t Indicat f when th t d Opt
LMSSetValue(“cmi.evaluation.comments.n.time “, value)

--location ndication of where in the content the comment is made. p
locat Indicat f wh th tent th t d Opt
LMSSetValue(“cmi.evaluation.comments.n.location “, value)
|--content The recorded statement of a student. Opt

LMSSetValue(“cmi.evaluation.comments.n.content “, value)

[--id Unique alphanumeric label created by the content developer. Opt
LMSSetValue(“cmi.interactions.n.id “, value)

|--objective_ids Indication of any objectives associated with the interaction. Opt
LMSSetValue(“cmi.interactions.n.objective ids.n“, value)

|--time Indication of when the interaction is available to the student. Opt
LMSSetValue(“cmi.interactions.n.time “, value)

|--type Indication of which category of interaction is recorded. Opt
LMSSetValue(“cmi.interactions.n.type “, value)

|--responses Expected student feedback in the interaction.

|--]--description Definition of possible student response. Opt

LMSSetValue(“cmi.interactions.n.response.n.description”, value)

SCORM (1.0) Page 66

ADL Sharable Courseware Object Reference Model

Element Name Student Data Collection Table LMS
Contextualized Definition Obli-
gation
[--]--value How the system judges the described response. Opt
LMSSetValue(“cmi.interactions.n.response.n.value®, value)
[--weighting Factor that is used to identify the relative importance of one interaction Opt
compared to another.
LMSSetValue(“cmi.interactions.n.weighting “, value)
[--student_ Description of the computer-measurable action of a student in an Opt
response interaction.
LMSSetValue(“cmi.interactions.n.student _response “, value)
|--result Judgment of the student’s response. Opt
LMSSetValue(“cmi.interactions.n.result “, value)
|--latency The time from the presentation of the stimulus to the completion of the Opt
measurable response.
LMSSetValue(“cmi.interactions.n.latency “, value)
[--location_id Identification of where the student is in the content. Opt
LMSSetValue(“cmi.path.n.location_id”, value)
[--time Indication of when the student entered the content segment. Opt
LMSSetValue(“cmi.path.n.time”, value)
|--status A record of the student’s performance in a segment each time he leaves Opt
that element
LMSSetValue(“cmi.path.n.status”, value)
[--why_left The reason a student departed an element in the content. Opt
LMSSetValue(“cmi.path.n.why_left”, value)
[--time_in_ How long the student spent in the element. Opt
element LMSSetValue(“cmi.path.n.time_in_element”, value)

SCORM (1.0)

Page 67

ADL Sharable Courseware Object Reference Model

6.7.4 “CMI” Data Types and Controlled Vocabularies

A data type definition exists for each element in the CMI data model. The data type
definitions are summarized in section B.7 of Appendix B. Sections B.4, B.5, and B.6
define the data type for each of the data model elements. These definitions define how
the APl and data model must be implemented.

In addition to data types, some data model elements are predefined with bounded
vocabularies of possible values. The table below summarizes the vocabulary type and
values (from section B.7, AICC CMI 3.0.1 Appendix B). Definitions for each vocabulary
are contained in sections 5.1 and 5.2 of the AICC CMI 3.0.1 specification

Vocabulary Type Members of Vocabulary

Mode normal review
browse

Status passed completed
failed incomplete
browsed not attempted

Exit time-out suspend
logout

Why-left student selected lesson directed
exit directed departure

Credit credit no credit

Entry ab-initio resume

Time Limit Action exit continue
message no message

Interaction true-false multiple choice
fill in the blank matching
simple performance likert
sequencing unique
numeric

Result correct wrong
unanticipated neutral
x.X (CMIDecimal)

6.8 Conformance Testing

Three things need to be tested for runtime environment conformance with the SCORM:
support of launch, correct implementation of the API, and correct usage of the data
model. The responsibilities for the LM S and content are different.

Testing an LMS (or course authoring environment) for conformance:
1. Canthe LMS launch a known conforming course au?
2. Doesthe LMS fully support the mandatory API functionality?
3. Doesthe LMS support the mandatory and optional data elements in the data
model ?

Testing content for conformance:

SCORM (1.0) Page 68

ADL Sharable Courseware Object Reference Model

=

Can the content be launched by a known conforming LM S test environment?

2. Does the content correctly implement the minimum API functionality (i.e.,
initialize() and terminate())?

3. Doesthe content correctly implement other API calls (if any)?

4. Does the content exchange conforming data over the API?

Detailed test criteria and test software are expected to be developed and included in this
document in a future version.

SCORM (1.0) Page 69

This page was intentionally left blank.

ADL Sharable Courseware Object Reference Model

7. Metadata
7.1 Overview

Metadata — data about data — for learning content, has been under development within a
number of national and international organizations over the past few years. The purpose
of metadata is to provide a common means to describe things (electronically) so that
“learning objects’ (however they are defined) can be self defined, searched, and found.
Learning content is only one area of metadata application. Metadata is also actively
being developed in al aspects of Web-based content and commerce.

ADL has looked to the IEEE Learning Object Metadata subgroup and the Instructional
Management Systems project as the harmonizing bodies that are defining metadata
specifically for learning content. These groups, which have been working collaboratively
over the past few years, have developed a core specification to which this document
refers.

The IMS and | EEE specifications (http://www.imsproject.org/metadata and
http://Itsc.ieee.org/doc/wgl2/WD3) define a standard “dictionary” of metadata element
definitions along with recommendations for “best practices” and XML bindings
(critically important for implementation). These documents however, do not specifically
propose how individual communities of users might elect to apply these metadata
definitions to their content models.

The ADL SCORM referencesand abides by the IEEE/IMS definitions and goes one step
further to apply these definitions to the three components of the SCORM model: raw
media, content, and courses. This mapping of standardized definitions from IEEE/IMS to
the SCORM model provides the missing link between general specifications and specific-
content models. Many thanks go to Wayne Hodgins, Tom Wason, Thor Anderson, and
Steve Griffin for their efforts in establishing these key specifications. The following
sections define the SCORM application of IEEE/IMS definitions.

7.2 Definitions of SCORM Metadata Elements:

The following definitions “map” how metadata is to be applied to the SCORM * content
model.” In all cases, the IEEE/IM S documents are referenced and applied to the various
components of the ADL SCORM model.

7.2.1 Raw Media Metadata

A definition of metadata that can be applied to so-called “raw media’ assets, such as
illustrations, documents, or media streams, that provide descriptive information about the
raw media independent of courseware content. This metadata is used to facilitate reuse
and discoverability principally during content creation of such media elements within, for
example, a media repository.

Metadata that describes raw media elements in a non-context specific way

SCORM (1.0) Page 71

ADL Sharable Courseware Object Reference Model

Information that can be searched externally such as media asset title, description,
date of creation, and version
Information that can be used to create a searchable repository of sharable media

elements.

7.2.2 Content Metadata

A definition of metadata that can be applied to Web-based content, which provides
descriptive information about the content independent of a particular course. This
metadata is used to facilitate reuse and discoverability of such content within, for

example a content repository.
Metadata that describes a[sharable] “chunk” of content

Content metadata that is not related to a specific course structure (i.e., context-
independent metadata)

Information that can be searched externally such as content asset title, description,
and version.

7.2.3 External Course Metadata

A definition for external metadata that describes a course package for the purposes of
searching (enabling discoverability) within a courseware repository and for providing
descriptive information about the course.

Information about a course as awhole that describes what it is for, who can use it,

who controlsit, etc.
Information that can be searched externally such as the course title, course

description, and version.

7.2.4 SCO Structure Format (Assignment Hierarchy) Metadata

Metadata within a representation (such as XML) of a course structure that can be used to
define all of the course elements, structure, and external references necessary to move a
course from one LM S environment to another.

Metadata that is described with the specific assignments at different levels within

the lesson plan hierarchy
Course element metadata within a particular course hierarchy that is context

specific to that course hierarchy.

SCORM (1.0) Page 72

ADL Sharable Courseware Object Reference Model

7.3 SCORM Metadata Mapping

The following table lists each of the IEEE Learning Object Metadata elements as defined
in the IEEE LTSC Working Group P1484.12 WD3, document which is accessible at
http://Itsc.ieee.org/doc/wgl2/WD3 and included as Appendix C of thisdocument. The
right three columns define how each metadata e ement is to be applied to the SCORM,

and which elements should be used when building metadata records for raw media,

content, and entire courses.

[Blank = not used; M = mandatory; O = optional; SEL = (IMS) Standard Extension Library]

SCORM
Raw
Media

SCORM
Content

SCORM
External
Course

1.1 Identifier

A globally unique label that identifies this
resource.

This is reserved and shall not be used,
because there is no specified method for the
creation of a globally unique identifier.

RE-
SERV
ED

1.2 Title

Name given to this resource.

This element may be an already existing one or
it may be created by the indexer ad hoc.

This element shall correspond with the Dublin
Core element DC.Title.

CORE

1.3 Catalog Entry

This sub-category defines an entry within a
catalogue (i.e. a listing identification system)
assigned to this resource.

This sub-category is intended to describe this
resource according to some known cataloging
system so that it may be externally searched for
and located according to the methodology of
the specified system.

This sub-category may be used as a functional
replacement for the element
1.1:General.Identifier, as that is currently
reserved. In this way, it shall be used to store
the Dublin Core element DC.Identifier.

One of the catalog entries can be generated
automatically by the tool.

1.3.1 Catalog

The name of the catalogue (i.e. listing
identification system).

CORE

1.3.2 Entry

Actual string value of the entry within the
catalogue (i.e. listing identification system).

CORE

1.4 Language

The primary human language used within this
resource to communicate to the intended user.

An indexation tool may provide a useful default.

CORE

SCORM (1.0)

Page 73

ADL Sharable Courseware Object Reference Model

SCORM | SCORM | SCORM

Raw Content External
Media Course
This element shall correspond with the Dublin
Core element DC.Language.
1.5 Description A textual description of the content of this CORE | M M M

resource.
This element shall correspond with the Dublin
Core element DC.Description.

1.6 Keywords Keywords or phrases describing this resource. SEL 0 M M
This element should not be used for
characteristics that can be described by other
elements.

1.7 Coverage The span or extent of such things as time, SEL
culture, geography or region that applies to this
resource.

This element shall correspond with the Dublin
Core element DC.Coverage.

1.8 Structure Underlying organizational structure of this SEL
resource.

Restricted vocabulary:
1=User_defined
2=See_classification
3=Collection

4=Mixed

5=Linear
6=Hierarchical
7=Networked
8=Branched
9=Parceled
10=Atomic

1.9 Aggregation The functional granularity of this resource. SEL 0 ?TBD

Level Level 0 means smallest level of aggregation,

e.g. raw media data or fragments.

Level 1 refers to a collection of atoms, e.g. an

HTML document with some embedded pictures

or a lesson.

Level 2 indicates a collection of level 1

resources, e.g. a 'web' of HTML documents,

with an index page that links the pages

together or a unit.

Finally, level 3 refers to the largest level of

granularity, e.g. a course.

2 LifeCycle This category describes the history and current
state of this resource and those who have

affected this resource during its evolution.
2.1 Version The edition of this resource. CORE | O M M

2.2 Status The state or condition this resource is in. SEL] M M

Restricted vocabulary: restricted vocabulary:
1=User_defined

2=See_classification

3=Draft

SCORM (1.0) Page 74

ADL Sharable Courseware Object Reference Model

SCORM
Raw
Media

SCORM
Content

SCORM
External
Course

4=Final
5=Revised
6=Unavailable

2.3 Contribute

This sub-category describes those people or
organizations that have affected the state of
this resource during its

evolution (includes creation, edits and
publication).

This sub-category is different from
3.3:MetaMetaData.Contribute.

2.3.1 Role

Kind of contribution.
This element should include exactly one
instance of Author

Best practice list:
1=User_defined
2=See_classification
3=Author

4=Publisher

5=Unknown

6=Initiator

7=Terminator

8=Validator

9=Editor

10=Graphical Designer
11=Technical Implementer
12=Content Provider
13=Technical Validator
14=Educational Validator
15=Script Writer
16=Instructional Designer
It is recommended that exactly one instance of
Author exists.

CORE

2.3.2 Entity

The identification of and information about the
people or organizations contributing to this
resource, most relevant first.

If 2.3.1:LifeCycle.Contribute.Role equals
Author, then the entity should be a person and
this element shall correspond with the Dublin
Core element DC.Creator.

If 2.3.1:LifeCycle.Contribute.Role equals
Publisher, then the entity should be an
organization and this element shall correspond
with the Dublin Core element DC.Publisher.

If 2.3.1:LifeCycle.Contribute.Role is not equal to
Author or Publisher, then this element shall
correspond with the Dublin Core element
DC.Contributor.

If the entity is an organization, then it should be
a university department, company, agency,

CORE

SCORM (1.0)

Page 75

ADL Sharable Courseware Object Reference Model

Draft IEEE LTSC Learning | IEEE Explanation LS SCORM [SCORM | SCORM
Obj ect Metadata T ag Practices mv(\jlia Content (E:ﬁtlje:gsl
version 3.8 (11-7-99)

institute, etc. under whose responsibility the

contribution was made.
2.3.3 Date The date of the contribution. CORE | O 0] 0

3 MetaMetaData This category describes the specific information
about this metadata record itself (rather than
the resource that this record describes).

This category describes such things as who

created this metadata record, how, when and
with what references.

This is not the information that describes the
resource itself.
3.1 Identifier A globally unique label that identifies this |-
metadata record.
This is reserved and shall not be used, as there
is no specified method for the creation of a
globally unique identifier.
3.2 MetaMetaData. This sub-category defines an entry within a SEL
Catalog Entry catalogue (i.e. listing identification system),
given to the metadata instance.

This category is intended to describe this
metadata instance according to some

known cataloging system so that it may be
externally searched for and located according
to that system.

This element may be used as a functional
replacement for the currently reserved element
3.1:MetaMetaData.ldentifier.

One of the catalog entries may be generated
automatically by the tool.

3.2.1 Catalog The name of the catalogue (i.e. listing SEL
identification system).
Generally system generated.

3.2.2 Entry Actual string value of the entry in the catalogue. | SEL
This element is usually generated by the
system.

3.3 Contribute This sub-category describes those people or SEL

organizations that have affected the state of
this metadata instance during its evolution
(includes creator and validator).

This element is different from
2.3:Lifecycle.Contribute.

3.3.1 Role Kind of contribution. SEL
Exactly one instance of creator should exist.

Open vocabulary with best practice list:
1=User_defined

2=See_classification

3=Creator

4=Validator

SCORM (1.0) Page 76

ADL Sharable Courseware Object Reference Model

SCORM
Raw
Media

SCORM
Content

SCORM
External
Course

It is recommended that exactly one instance of
creator exists.

3.3.2 Entity

The identification of and information about the
people or organizations contributing to this
metadata instance, most relevant first.

SEL

3.3.3 Date

The date of the contribution.

SEL

3.4 Metadata Scheme

The name and version of the authoritative
specification used to create this metadata
instance.

This element may be user selectable or system
generated.

If multiple values are provided, then the
metadata instance shall conform to multiple
metadata schemes.

CORE

3.5 Language

4 Technical

4.1 Format

Language of this metadata instance. This is the
default language for all LangString values in
this metadata instance.

This category describes the technical
requirements and characteristics of this
resource.

Technical data type of this resource.
This element shall be used to identify the
software needed to access the resource.

Restricted vocabulary: MIME type or
‘non-digital’. Can be used to identify the
software needed to access the resource.

E.g video/ mpeg, application/ x-toolbook, text/
html

CORE

4.2 Size

The size of the digital resource in bytes. Only
the digits '0"..'9" should be used; the unit is
bytes, not MBytes, GB, etc.

This element shall refer to the actual size of this
resource, and not to the size of a compressed
version of this resource.

SEL

4.3 Location

A string that is used to access this resource. It
may be a location (e.g. Universal Resource
Locator), or a method that resolves to a location
(e.g. Universal Resource Identifier).

Preferable Location first.
This is where the learning resource described
by this metadata instance is physically located.

e.g., http://host/id

CORE

4.4 Requirements

This sub-category describes the technical
capabilities required in order to use this
resource.

If there are multiple requirements, then all are
required, i.e. the logical connector is AND.

4.4.1 Type

The technology required to use this resource,

SEL

SCORM (L.0)

Page 77

Draft IEEE LTSC Learning

Object Metadata Tag
version 3.8 (11-7-99)

ADL Sharable Courseware Object Reference Model

IEEE Explanation

i.e. hardware, software, network, etc

Open vocabulary with best practice:
1=User_defined
2=See_classification

3=Operating System

4=Browser

IMS Best
Practices

SCORM
Raw
Media

SCORM
Content

SCORM
External
Course

4.4.2 Name

Name of the required technology to use this
resource.

The value for this element may be derived from
4.1:Technical.Format automatically, e.g.,
"video/mpeg" implies "Multi-OS".

If Type="Operating System’, then best practice
list:

1=User_defined

2=See_classification

3=PC-DOS

4=MS-Windows

5=MacOS

6=Unix

7=Multi-0OS

8=Other

9=None

if Type='Browser' then best practice list:
10=Any

11=Netscape Communicator
12=Microsoft Internet Explorer
13=Opera

if other type then open vocabulary

SEL

4.4.3 Minimum
Version

Lowest possible version of the required
technology to use this resource.

SEL

4.4.4 Maximum
Version

Highest version of the technology known to
support the use of this resource.

SEL

4.5 Installation
Remarks

Description on how to install this resource.

SEL

4.6 Other Platform
Requirements

Information about other software and hardware
requirements.

SEL

4.7 Duration

5 Educational

5.1 Interactivity Type

Time a continuous resource takes when played
at intended speed.

This is especially useful for sounds, movies or
animations.

This category describes the key educational or
pedagogic characteristics of this resource.
This is the pedagogical information essential to

those involved in achieving a quality learning
experience. The audience for this metadata
includes teachers, managers, authors and
learners.

The flow of interaction between this resource
and the intended user.

SEL

SEL

SCORM (L.0)

Page 78

ADL Sharable Courseware Object Reference Model

SCORM | SCORM SCORM
Raw Content External
Media Course

In an expositive resource, the information flows
mainly from this resource to the learner.
Expositive documents are typically used for
learning- by- reading.

In an active resource, information also flows
from the learner to this resource. Active
documents are typically used for learning-by-
doing.

Activating links to navigate in hypertext
documents is not considered as an information
flow. Thus, hypertext documents are expositive.

Restricted vocabulary:
1=User_defined
2=See_classification
3=Active
4=Expositive

5=Mixed

6=Undefined

- Expositive documents include essays, video
clips, all kinds of graphical material and
hypertext documents. Active documents include
simulations, questionnaires and exercises.

5.2 Learning Specific kind of resource, most dominant kind SEL 0 0 0
Resource Type first,

This element shall correspond with the Dublin
Core element 'Resource Type'. The vocabulary
is adapted for the specific purpose of learning
objects.

Open vocabulary with best practice:
1=User_defined
2=See_classification
3=Exercise
4=Simulation
5=Questionnaire
6=Diagram

7=Figure

8=Graph

9=Index

10=Slide

11=Table
12=Narrative Text
13=Exam
14=Experiment
15=ProblemStatement
16=SelfAssesment

5.3 Interactivity Level | This element shall define the degree of SEL
interactivity between the end user and this

SCORM (1.0) Page 79

ADL Sharable Courseware Object Reference Model

SCORM
Raw
Media

SCORM
Content

SCORM
External
Course

resource, with 0 defined as "Very Low", 1
defined as "Low", 2 defined as "Medium"”, 3
defined as "High", and 4 defined as "Very
High".

5.4 Semantic Density

This element shall define a subjective measure
of this resource's usefulness as compared to its
size or duration, with 0 defined as "Very Low", 1
defined as "Low", 2 defined as "Medium"”, 3
defined as "High", and 4 defined as "Very
High".

SEL

5.5 Intended end
user role

Principal user(s) for which this resource was
designed, most dominant first.

A learner works with a resource in order to
learn something. An author creates or
publishes a resource. A manager manages the
delivery of this resource, e.g., a university or
college. The document for a manager is
typically a curriculum.

Restricted vocabulary:

0=Teacher

1=Author

2=Learner

3=Manager

A learner works with a resource in order to
learn something.

An author creates or publishes a resource.
A manager manages the delivery of the
resource, e.g., a university or college. The
document for a manager is typically a
curriculum.

SEL

5.6 Context

The principal environment within which the
learning and use of this resource is intended to
take place.

Open vocabulary with best practice:
1=User_defined
2=See_classification

3=Primary Education

4=Secondary Education

5=Higher Education

6=University First Cycle
7=University Second Cycle
8=University Postgrade
9=Technical School First Cycle
10=Technical School Second Cycle
11=Professional Formation
12=Continuous Formation
13=Vocational Training

14=Cther

SEL

5.7 Typical Age
Range

Age of the typical intended user.

SEL

SCORM (1.0)

Page 80

ADL Sharable Courseware Object Reference Model

Draft IEEE LTSC Learning | IEEE Explanation LS SCORM [SCORM | SCORM
RIGCHCESH e\ Content External

Media Course

Object Metadata Tag
version 3.8 (11-7-99)

This element shall refer to developmental age,
if that would be different from chronological
age.

The age of the learner is important for finding
resources, especially for school age learners
and their teachers.

When applicable, the string should be formatted
as minage-maxage or minage-. (This is a
compromise between adding three subfields
(minAge, maxAge and description) and having
just a free text field.)

Various reading age schemes, 1Q's or
developmental age measures should be
represented through the 9:Classification
category

5.8 Difficulty This element defines how hard it is to work SEL
through this resource for the typical target
audience, with 0 defined as "Very Easy", 1
defined as "Easy", 2 defined as "Medium", 3
defined as "Difficult”, and 4 defined as "Very
Difficult".

5.9 Typical Learning | Approximate or typical time it takes to work with | SEL 0 0
Time this resource.

5.10 Description Comments on how this resource is to be used. | SEL

E.g., Teacher guidelines that come with a
textbook.

5.11 Language The human language used by the typical SEL
intended user of the resource.

LanguagelD = Langcode('-'Subcode)*, with
Langcode a two-letter language code as
defined by 1ISO639 and Subcode a country
code from ISO3166. e.g., “en”, "en-GB", "de",
"fr-CA", "it"

6 Rights This category describes the intellectual property
rights and conditions of use for this resource.
The intent is to reuse results of ongoing work in

the Intellectual Property Right and e-commerce
communities. This category currently provides
the absolute minimum level of detail only.
6.1 Cost Whether use of the resource requires payment. | CORE | M M M

Restricted vocabulary:
1=User_defined
2=See_classification
3=yes

4=no

6.2 Copyright and Whether copyright or other restrictions applyto | CORE | M M M

SCORM (1.0) Page 81

ADL Sharable Courseware Object Reference Model

Draft IEEE LTSC Learning | IEEE Explanation 'Ffﬁgcﬁgzts ESSRM ggﬁzm E)%g:m
Object Metadata Ta .
verjsion 38 (11-7-999)] Media Course
Other Restrictions the use of this resource.
Restricted vocabulary:
1=User_defined
2=See_classification
3=yes
4=no
6.3 Description Comments on the conditions of use of this CORE | O 0 0
resource.

7 Relation This category defines the relationship between
this resource and other targeted resources, if
any.

To define multiple relationships there may be
multiple instances of this category. If there is
more than one target resource, then each
target is covered by a new relationship
instance.
7.1 Kind Nature of the relationship between this
resource and the target resource, identified by
7.2:Relation.Resource.

This element shall correspond with the Dublin
Core element DC.Relation.

Best practice list from Dublin Core:
1=User_defined
2=See_classification
3=IsPartOf
4=HasPart
5=lsVersionOf
6=HasVersion
7=IsFormatOf
8=HasFormat
9=References
10=IsReferencedBy
11=IsBasedOn
12=IsBasisFor
13=Requires
14=IsRequiredBy
7.2 Resource The target resource that this relationship
references.
7.2.1 Identifier Unigue Identifier of the target resource. | -
This is reserved and shall not be used.
7.2.2 Description Description of the target resource. SEL
8 Annotation This category provides comments on the
educational use of this resource, who created
this annotation and when.
When multiple annotations are needed, multiple
instances of this category may be used.
8.1 Person The person who created this annotation.

SCORM (1.0) Page 82

ADL Sharable Courseware Object Reference Model

Draft IEEE LTSC Learning | IEEE Explanation L“Ecﬁg:; ESSRM ggﬁm E)%gml
Object Metadata Tag .

: Med C
version 3.8 (11-7-99) ece ourse
8.2 Date Date that this annotation was created. SEL
8.3 Description The content of this annotation. SEL

9 Classification This category describes where this resource is
placed within a particular classification system.

To define multiple classifications, there may be

multiple instances of this category.

If 9.1:Classification.Purpose equals Discipline,
then this category shall correspond with the
Dublin Core element DC.Subject.

9.1 Purpose The purpose of classifying this resource. CORE M M

Open vocabulary with best practice:
1=User_defined

2=See_classification

3=Discipline

4=Idea

5=Prerequisite

6=Educational Objective
7=Accessibility Restrictions
8=Educational Level

9=Skill Level

10=Security Level

9.2 TaxonPath This sub-category describes a taxonomic path
in a specific classification system. Each
succeeding level is a refinement in the
definition of the higher level.

There may be different paths, in the same or
different classifications, that describe the same
characteristic.

A taxonomy is a hierarchy of terms or phrases
that are taxons.

9.2.1 Source The name of the classification system. SEL
This element may use any recognized "official”
taxonomy, any user-defined taxonomy. An
indexation or query tool may provide the top-
level entries of a well-established classification
(LOC, UDC, DDC, etc.).

9.2.2 Taxon This sub-category describes a particular term
within a hierarchical classification system or
taxonomy. A taxon is a node that has a defined
label or term. A taxon may also have an
alphanumeric designation or identifier for
standardized reference. Either or both the label
and the entry may be used to designate a
particular taxon.

An ordered list of Taxons creates a taxonomic
path, i.e. "taxonomic stairway": this is a path
from a more general to more specific entry in a

SCORM (L.0) Page 83

ADL Sharable Courseware Object Reference Model

SCORM
Raw
Media

SCORM
Content

SCORM
External
Course

classification.

A TaxonPath shall have a depth from 1 to 9.
Normal values should be defined as values
between 2 and 4.

e.g., Physics/ Acoustics/ Instruments/
Stethoscope;

Medicine/ Diagnostics/ Instruments/
Stethoscope

9.2.2.11D

The identifier of the taxon, such as a number or
letter combination provided by the source of the
taxonomy.

e.g., 300

SEL

9.2.2.2 Entry

The textual label of the taxon

e.g., Social Sciences

SEL

9.3 Description

This is the description of the resource relative
to the stated 9.1:Classification.Purpose of this
specific classification, such as discipline, idea,
skill level, educational objective, etc..

CORE

9.4 Keywords

These are the keywords and phrases
descriptive of the resource relative to the stated
9.1:Classification.Purpose of this specific
classification, such as accessibility, security
level, etc., most relevant first.

CORE

SCORM (1.0)

Page 84

ADL Sharable Courseware Object Reference Model

7.4 Stand-Alone XML Metadata Records

It is expected that each of the three categories of SCORM metadata (raw media, content,
and course) will take the form of stand-alone XML records that conform to the IMS
Learning Resource Meta-data XML Binding Specification, Version 1.0 (included as
Appendix D).

SCORM metadata records are expected to be valid, well-formed XML documents based
on the Document Type Definitions (DTD) in Appendix D; however, the only metadata
elements that should be used are those listed as “mandatory” or “optional” as defined in
section 7.3 above.

7.5 XML Schema, Namespaces, and Extensibility

The use of XML Document Type Definitions (DTDs) as a means to ensure conformance
is understood to be highly problematic in the Internet community. DTDs fail to provide
adequate mechanisms for extensions and do not guarantee interoperability.

New approaches for defining interoperable and flexible XML records are emerging from
organizations such as XML Schema and name spacing being devel oped within the W3C
(www.w3c.org). The W3C Home page provides areference to an XHTML version 1.0.
These developments are beyond the scope of this document. It is nonetheless the
expectation that the XML bindings referenced in this document that today depend on
DTDs will later be converted to comply with mainstream XML practices once they are
defined and adopted.

This means that XML metadata records produced using the specifications included in this
document will eventually need to be converted to newer XML formats as they become
defined. This conversion is not expected to be particularly difficult and can probably be
performed semi-automatically using simple software tools.

7.6 Conformance Testing

Conformance testing of metadata records consists of verifying that a metadata record is a
valid IMS/IEEE record, and that it has the mandatory or optional elements for its use as
specified within the SCORM for external course, content, and raw media metadata
records.

7.7 XML Examples

The following examples are empty XML files based on the IMS XML DTD [see
Appendix D], but only contain elements that apply to the ADL SCORM for each of the
three categories.

SCORM (1.0) Page 85

ADL Sharable Courseware Object Reference Model

7.7.1 Empty Raw Media XML Metadata record

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE RECORD SYSTEM "I M5_MDO1. dtd" >
<RECORD xm ns="http://ww. i nsproj ect.org/netadatal">
<METAVETADATA>
<!--Mandatory El enent SCORM RWD- - >
<METADATASCHEME/ >
</ METAMETADATA>
<CGENERAL>
<TlI TLE>
<!--Mandatory el enent SCORM RWD- - >
<LANGSTRI NG >
</ TI TLE>
<CATALOGENTRY>
<I--QOptional elenents SCORM RWD- - >
<CATALOGUE >
<ENTRY>
<LANGSTRI NG >
</ ENTRY>
</ CATALOGENTRY>
<LANGUAGE>
<I--Optional elenment SCORM RWD- - >
</ LANGUAGE>
<DESCRI PTI ON>
<!--Mandatory el enent SCORM RWD- - >
<LANGSTRI NG >
</ DESCRI PTI ON>
<KEYWORDS>
<l--QOptional elenment SCORM RWD- - >
<LANGSTRI NG >
</ KEYWORDS>
</ GENERAL>
<Ll FECYCLE>
<VERS| ON>
<!--Qptional elenment SCORM RWD- - >
<LANGSTRI NG >
</ VERS| ON>
<STATUS>
<!--Qptional elenment SCORM RWD- - >
<LANGSTRI NG >
</ STATUS>
<CONTRI BUTE>
<I--ALL lifecycle elenents opti onal SCORM RWD- - >
<ROLE>
<LANGSTRI NG >
</ ROLE>
<CENTI TY>
<l--Optional elenent SCORM RWD- - >
</ CENTI TY>
<DATE>
<!--QOptional el enent SCORM RWWD- - >
<DATETI ME/ >
</ DATE>
</ CONTRI BUTE>
</ LI FECYCLE>
<TECHNI CAL>
<FORVAT>
<!--Mandatory el enent SCORM RWD- - >
<LANGSTRI NG >
</ FORVAT>
<S| ZE>
<I--Optional elenment SCORM RMWD- - >
</ Sl ZE>
<LOCATI ON>
<l--Qptional elenent SCORM RWD- - >
</ LOCATI ON\>
<REQUI REMENTS>
<TYPE>
<LANGSTRI NG >

SCORM (1.0) Page 86

ADL Sharable Courseware Object Reference Model

</ TYPE>
<I--Optional elenment SCORM RWD- - >
<M NI MUMVERSI ON\>
<l--Optional elenent SCORM RWD- - >
</ M Nl MUWERSI ON>
<MVAXI MUMVERSI ON>
<l--Optional elenent SCORM RWWD- - >
</ MAXI MUWERSI ON>
</ REQUI REMENTS>
<I NSTALLATI ONREMARKS>
<l--Qptional elenment SCORM RWD- - >
<LANGSTRI NG >
</ | NSTALLATI ONREMARKS>
<OTHERPLATFORMREQUI REMENTS>
<LANGSTRI N&
<l--Optional elenent SCORM RWD- - >
</ LANGSTRI NG
</ OTHERPLATFORMREQUI REMVENTS>
<DURATI ON>
<!--Optional elenment SCORM RWD- - >
<DATETI ME/ >
</ DURATI ON>
</ TECHNI CAL>
<EDUCATI ONAL>
<LEARNI NGCONTEXT>
<!--Optional elenment SCORM RWD- - >
<LANGSTRI NG >
</ LEARNI NGCONTEXT>
</ EDUCATI ONAL>
<Rl GHTS>
<COsT>
<!--Mandatory el enent SCORM RWD- - >
<LANGSTRI NG >
</ COST>
<COPYRI GHTOROTHERRESTRI CTI ONS>
<!--Mandatory el enent SCORM RWD- - >
<LANGSTRI NG >
</ COPYRI GHTOROTHERRESTRI CTI ONS>
<DESCRI PTI ON\>
<l--QOptional elenment SCORM RWD- - >
<LANGSTRI NG >
</ DESCRI PTI ON>
</ R GHTS>
</ RECORD>

7.7.2 Empty Content XML Metadata record

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE RECORD SYSTEM "1 M5_MDO1. dt d" >
<RECORD xm ns="http://ww. i nsproj ect.org/ netadatal">
<METAMETADATA>
<!--Mandatory El enent SCORM CONTENTMD- - >
<METADATASCHEME/ >
</ METAMETADATA>
<CGENERAL>
<TI TLE>
<!--Mandatory el enent SCORM CONTENTNMD- - >
<LANGSTRI NG >
</ TI TLE>
<CATALOGENTRY>
<!--Mandatory el enents SCORM CONTENTMD- - >
<CATALOGE >
<ENTRY>
<LANGSTR NG >
</ ENTRY>
</ CATALOGENTRY>
<LANGUAGE>
<I--Optional element SCORM CONTENTMD- - >
</ LANGUAGE>

SCORM (1.0) Page 87

ADL Sharable Courseware Object Reference Model

<DESCRI PTI ON>
<!--Mandatory el enent SCORM CONTENTMD- - >
<LANGSTRI NG >
</ DESCRI PTI ON>
<KEYWORDS>
<!--Mandatory el enent SCORM CONTENTMD- - >
<LANGSTRI NG >
</ KEYWORDS>
<AGGREGATI ONLEVEL>
<I--Optional element SCORM CONTENTMD- - >
</ AGGREGATI ONLEVEL>
</ GENERAL>
<LI FECYCLE>
<VERS| O\>
<!--Mandatory el enent SCORM CONTENTNMD- - >
<LANGSTRI NG >
</ VERSI ON>
<STATUS>
<!--Mandatory el ement SCORM CONTENTMD- - >
<LANGSTRI NG >
</ STATUS>
<CONTRI BUTE>
<I--ALL lifecycle el enents optional SCORM CONTENTMD- - >
<ROLE>
<LANGSTRI NG >
</ ROLE>
<CENTI TY>
<I--Optional elenent SCORM CONTENTMD- - >
</ CENTI TY>
<DATE>
<I--Optional elenent SCORM CONTENTMD- - >
<DATETI ME/ >
</ DATE>
</ CONTRI BUTE>
</ LI FECYCLE>
<TECHNI CAL>
<FORMVAT>
<!--Mandatory el enent SCORM CONTENTMD- - >
<LANGSTRI NG >
</ FORVAT>
<8l ZE>
<l--Optional elenent SCORM CONTENTMD- - >
</ Sl ZE>
<LOCATI ON type="UR ">
<I--Optional elenment SCORM CONTENTMD- - >
</ LOCATI ON\>
<REQUI REMENTS>
<TYPE>
<LANGSTRI NG >
</ TYPE>
<I--Optional elenment SCORM CONTENTMD- - >
<M NI MUMVERSI ON\>
<I--Optional elenent SCORM CONTENTMD- - >
</ M Nl MUWERSI ON>
<MVAXI MUMVERSI ON>
<!--QOptional elenent SCORM CONTENTMD- - >
</ MAXI MUWERSI ON>
</ REQUI REMENTS>
<I NSTALLATI ONREMARKS>
<l--QOptional elenent SCORM CONTENTMD- - >
<LANGSTRI NG >
</ | NSTALLATI ONREMARKS>
<OTHERPLATFORMREQUI REMENTS>
<LANGSTRI NG>
<I--Optional elenent SCORM CONTENTMD- - >
</ LANGSTRI NG
</ OTHERPLATFORMREQUI REMVENTS>
<DURATI ON>
<I--Optional element SCORM CONTENTMD- - >
<DATETI ME/ >
</ DURATI ON>

SCORM (1.0) Page 68

ADL Sharable Courseware Object Reference Model

</ TECHNI CAL>
<EDUCATI ONAL>
<LEARNI NGCONTEXT>
<I--Optional elenment SCORM CONTENTMD- - >
<LANGSTRI NG >
</ LEARNI NGCONTEXT>
<TYPI CALLEARNI NGTI Me>
<I--Optional element SCORM CONTENTMD- - >
<DESCRI PTI ON>
<LANGSTRI NG >
</ DESCRI PTI ON\>
</ TYPI CALLEARNI NGTI ME>
</ EDUCATI ONAL>
<RI GHTS>
<CCosT>
<!--Mandatory el enent SCORM CONTENTMD- - >
<LANGSTRI NG >
</ COST>
<COPYRI GHTOROTHERRESTRI CTI ONS>
<!--Mandatory el enent SCORM CONTENTMD- - >
<LANGSTRI NG >
</ COPYRI GHTOROTHERRESTRI CTI ONS>
<DESCRI PTI ON>
<I--Optional element SCORM CONTENTMD- - >
<LANGSTRI NG >
</ DESCRI PTI ON\>
</ R GHTS>
<CLASSI FI CATI ON>
<PURPCSE>
<!--Mandatory el enent SCORM CONTENTMD- - >
<LANGSTRI NG >
</ PURPOSE>
<DESCRI PTI ON\>
<!--Mandatory El enent SCORM CONTENTMD- - >
<LANGSTRI NG >
</ DESCRI PTI O\>
<KEYWORDS>
<!--Mandatory el enent SCORM CONTENTMD- - >
<LANGSTRI NG >
</ KEYWORDS>
</ CLASSI FI CATI ON>
</ RECORD>

7.7.3 Course Metadata XML record

Course metadata and content metadata currently have the same mandatory and optional
elements. This could change during evaluation of these specifications; therefore, a
placeholder is provided here. The issue at hand is that overhead associated with metadata
tags may result in some elements being eliminated from content or course records. This
must be determined through trial implementations.

SCORM (1.0) Page 89

This page was intentionally |left blank.

ADL Sharable Courseware Object Reference Model

8. Sample SCORM Code

The release of SCORM version 1.0 includes a package of samples that illustrate various
aspects of this document. They are available for free and may be downloaded from
www.adlnet.org

Note: The sample code described in this section will be updated and expanded over time.
Be sure to download the most recent version and view the readme.htm file for new
information. The samples described in this section of the document may have been
superceded by newer versions by the time you read this. Download the sample LMS
from www.adlnet.org

You are free to use and modify these samples any way you wish. If you create new or
improved samples, please send them to secretariat@adlnet.org so others may benefit from
what you have learned.

This release includes a sample LM S and content, and an XML Course Structure Format
editor.

T

Ty AL Ty b ol Indoa nad. [spllarar
| Fiw Ecét “hes Faemilmx Too: Help

ot =p

AN e EE [H= GG)

Fiefraaly - Hime Soaoh Fayodbes Higion [T} Pl Edi Do s

=1 it Sl

| Aagidimzz Ig_] 1D i o e B B e iz Pl = oda
TWalcoms ta the Advanced Dirtributed Lesrmisg (ADL) Eaxpls 8]
Avlvainced Distribsubed Leammg Management: System (LM, Thos sample LT ie mtended

Learniing b= provnde & reference mogdementabcn <Ethe concepts deecnbe<din
the AT Shareable Ceoureewace Chisct Blodel (500 O0FR).

Sampla LMS This gample wad dereloped aver o exremely short period of tme
Eo the piopeas of illustranog dee coneepta depepibed in the SO0ED
and will be expanded ay bmes prmta. It s ot & complete LS
implememtabicn The main focus darmg Hhos feraben <F derelopment

Loy har been the runbme snrrcnment communicaten between the LGS
and mssignable uwoote (ATT:] wemg thie AFPT mecharsm descrbed in
tae SR

w We have chogen to implement thas version of the sample LS aaa

weh-baacd clicnbacrver applicebion uxing TTTML, Tavascript, Tave
Applets and Tava Serulets LI

] Do [E imd e

8.1 Sample LMS and Content

The sample LMS is intended to provide an example implementation of the concepts
described in the ADL Sharable Courseware Object Model (SCORM) version 1.0. This
sample was developed over an extremely short period of time in order to provide an
illustration of the concepts described in the SCORM as quickly as possible. 1t will be

SCORM (1.0) Page 91

ADL Sharable Courseware Object Reference Model

continuously expanded. The main focus during this iteration of development has been
the runtime environment communication between the LM S and Assignable Units (AUS)
using the APl mechanism described in the SCORM. It is not acomplete LMS
implementation.

Several shortcuts have been taken in this version:
Robust exception and error handling have not been included in this sample code.
There are a near infinite number of possible LMS implementations. This version
of the sample LM S was implemented as a Web-based client/server application
using HTML, JavaScript, Java applets, and Java Servlets.
This Sample LM S supports only a single student and a single course with one
lesson at thistime.
Concurrent access is not supported. Only ore client can accessthe LMS at a
time.

This sample code consists of the following components:
LMS Server: Implemented using java servlets
LMSClient: Implemented using Java applets, HTML, and JavaScript
Sample Course: Implemented using HTML and JavaScript.

8.1.1 LMS Server

The LMS server functionadlity is implemented using Java servlets and HTML. The
servlets respond to requests from the LMS client and are responsible for CMI data model
persistence, serving the student course and lesson menus, and launching the selected

lesson.
B EW o Foeoim Lo ot W

Ll AU (T DA SO~ AN Y G e B AR |
LS Wio Febolk Hoss Seadh Froami ey e Fard iw [T
|l PR e Ll s o] e i ¥

Thies puusgots of L vcarsa I3 pe davsraess sha famecionaliy avd =
capmbiligr af the ADL FAWPLE LU CTC docer na meco morsend]
Fropane ar e pronase e oyl feshien, e e gl centear
Frevisarad by i dran,

Samgile L Inland Kules of the Koad

otz et FEFERETCE! .7 ot Gaard, (7 etwi arwhid (et ston B LEFTZ 20

—_: e et

(LIl Tialize
S y Tr to geb core dats foon smrvlet. .

ey [SepglecProey! | GerCAICorelatal |

The culCorefats Dbject for the cacrent &0 contaime the follos
SORIENG LAl Dsexdl
oot o Jom Stodsnt I Sradom |
Lemesogy Losoatloni
cradit: cradit J ot Corkmay
mlasaoe STATAS DOT ATCARpTed al
arbry: mh-ieitis Almdirars
SO0TE, T

WO, L

| M= Thi conmres wall gros e winderd a b

awd Bl g s Mol Thetiok =t bt Py

arcordmy tu b retorton bried shcen A T E

Lemmon_podde| moTmal
[AFL: ! LESCorPalios
Looking for the slepent onl, core, Lesson_statas
FoTUrniey BOT STOeDed
[o AFL: i LASE=tlLa=tlroory|
[r APL: : LAESerRaloet|
Lookiing for Ghe slepent ool coDe, Lesson_stanas
feer ool coTe, Lesson STaTas [0 lnconplen: _Ill

Cies Chazs

SCORM (1.0) Page 92

ADL Sharable Courseware Object Reference Model

There are five servlets as described below:

1.

LMSCMI Servlet.java

Provides a mechanism for communication between the LM S and the AU, in this
case the lesson. This particular implementation is specifically for the CMI data
model that is described in the SCORM. Other modules could be created to handle
other data models as they come into existence. The "LMSCMIServlet" sends and
receives seriaized data model objects viaHTTP to and from the LMS API Client
(see below). This sample supports only the core data elements defined in
appendix B of the AICC CMI Guidelines for Interoperability version 3.0. Data
persistence is handled by Java's built-in serialization mechanismusing afile on
the locd file system. No database systems are being used at this time.

LMSLoginServlet.java

Provides the ability to validate the student and serve the student's course menu.
The course menu isan HTML page dynamically built by the servliet. The serviet
is expandable to alow for future dynamic generation of course menu based on
student course registration. This servlet is invoked from the LMS Client when the
user presses "submit" on the LMS Login form.

LM SCour seServlet.java

Provides the ability to serve the Course Lesson menu. Similar to the student
course menu, the lesson menu is an HTML page that is dynamically built by the
servlet. Thisservlet is also expandable to allow for dynamic lesson menu
generation based on a Course Structure Format (CSF) XML document in a future
release. Thisservlet is called when the student clicks on the course.

LM SL essonServlet.java

Provides the ability to launch the AUs for the lesson. The servlet also handles the
sequencing of the AUs. In this version, the sequencing is hard coded and not
based on a Course Structure Format. The "LMSLessonServlet" serves the
appropriate AU page of the selected lesson to the browser within the LMS Client
framework. This servlet is called when the user navigates through the lesson.

LM SResetDBServiet.java

Provides the ability to delete the student-persistent data that is maintained by the
LMS. Thisaction will reset the student back to the “not have entered the lesson
yet” state. Thisis provided as a convenience to the user so that the student data
does not have to be "manually” deleted at the server. This capability is necessary
if you want to use the sample lesson multiple times. Because the LM S tracks

SCORM (1.0) Page 93

ADL Sharable Courseware Object Reference Model

lesson completion and does not allow students to take the lesson multiple times, it
is necessary to delete the student data and reset the state of the sample lesson.

8.1.2 LMS Client

The LMS client side consists of an LMS sample user interface implemented in HTML

and JavaScript and the LMS API implemented as a Java applet. The applet is

downloaded to the client when the user accesses the LM S Main start page through a Web
browser. The API applet provides the communication to the LM S server for data model
element persistence. The AUs make calls to the API functions from JavaScript. (See the
description of the sample course below for a description of how the LMS API function
cals are made from the AUs). The AUs do not need to know about any of the LMS

implementation details.

The following java source files make up the client side LMS API implementation:

API java: This contains the API class that is extended from the Java AWT applet
class and implements the LMS API functions (i.e., LMSInitialize, LM SFinish,

etc.)

LM SErrorManager.java: This contains the LMSErrorManager class which

encapsulates the error handling capabilities specified for the LMS API. It

maintains the most recent error code and the mapping of error codes to the error

text and diagnostic information.

ServletProxy.java: This contains the ServletProxy class which encapsulates the

communication between the LMS Client API applet and the LMS Server.

ServletWriter.java: This contains the ServletWriter class, which providesthe
lowlevel input and output serialized object streaming capability that is used by
ServletProxy to actually communicate with the serviet(s) viaHTTP. This class

was downloaded from www.javasoft.com.

In x
In EFTas LM ec i

bodling for che slewsmt Onl.cubd, exin
ART DML J0EE 210 LD

In BFT:-=LFSGanl Torl)
In BFL:zLFSGacy
Loaking foo the slesan: ouicoce. laszan made

ber e il]
In Py LESGeclastEroon
In sFLrnLEsd ecY¥alue] |

Clae
BT OMl.Tobs Tl G0 00 L0d. ELOM 000 D] s
In AFLzziMSGelartEooosi)

:ui. AFL:=LE=SFinizh

Ul

E.,m—"

SCORM (1.0)

Page 94

ADL Sharable Courseware Object Reference Model

The HTML/JavaScript Sample LMS User Interface is made up of the following HTML
files:

LMSMain.htm: Thisisthe main LMS Client page in which all student access
must begin. This page contains a frameset, which in turn, contains two frames —
an LMS navigation frame (left-side), which loads the LM SFrame.htm (see bel ow)
and a content frame. The content frame (right-side) initially contains the start
page (See LM SStart.htm) below. Asthe user logs in and selects a course, lesson,
etc., the right-side frame houses this content. Currently, no internal checks exist to
prevent the user from typing in the URL of one of the other LMS HTML pages
prior to starting at LM SMain.htm. If the user attempts to access one of the other
pages, undetermined LM S behavior will result.

LM SFrame.htm: This page containsthe LMS API applet. The LMS API applet
has no visual display elements and is therefore invisible to the user. The AUs
communicates with the LMS viathis API. This page aso contains alogin and
logout button.

LMSStart.htm: This page contains a brief textual description of the ADL Sample
LMS. Itisinitially displayed in the right frame of the LM SMain.htm page when
the user first accesses the sample LMS.

LM SL ogin.htm: This page contains an HTML form which prompts the user for a

username and password. Currently no checks are performed on the entries on this
form and the user may proceed simply by clicking the "Submit" button. By
submitting this form, the LM SLoginServlet is invoked.

L M SResetConfirm.htm: This page displays an "Are Y ou Sure?' message to the
user when they choose Reset Student from the main LMS Client page.

LM SResetComplete.htm: This page displays a"Reset Complete" message to the
user when the student data has been deleted.

8.1.3 AICC CMI Data Model

As mentioned above the AICC CMI data model is the data model used to communicate
between the LMS and the AUs and vice versa. At this time only the core data elements
are implemented in this sample. Severa classes are included to represent the core data
elements of the CMI model. These classes are used by both the servlets and the applet. It
isour intent that eventually each data type described in the AICC CMI guidelines will be
implemented asits own class. At thistime, only the CMITime data type is implemented
asajavaclass.

The source for these classes is as follows:

SCORM (1.0) Page 95

ADL Sharable Courseware Object Reference Model

CM I ScoreData.java: Contains the implementation for cmi.core.score data
element.

CMITimejava: Contains the implementation of the CMITime data type.
CMICoreData.,java: Contains the implementation of the cmi.core data model
elements needed for the AU to LMS and LMS to AU communication.

3 ADL Sample LMS - Microsoft Intemet Explorer

ile Edit “iew Fawortes Toole Help |“
- — e - = i = = =1 =
‘ e < B s (- S R e T — T
| Back FanimaTe Stop Refresh Home Seaich Favorites Iy " =3
|J| Address i@ http: /¢ localhost: 8080/ adl Imsmain. htrm [Locking for the element cui.core.exit o] || Links >

Set cmi.core.exit to
— Tn API::LMSGetlastError() |
Trn API::LMSFinish

Irn AFI::LM3Commiti()

prior to put, auCoreData is:
lezson_location:
lesson_status: failed
exit:

time: 0:1:29.54

gcore - min: 5
score - maw:
% score — raw: 3
igg:uﬁoiz;ie‘i In SerwvletProxy::PutCMICoreDatal)
exit Put to Serwer succeeded!
session: 7 In API::LMSGetLastErrori)
' : of
Seruvlet wrote ocut LMSE Core Data in determine AU. il | -
42 _9 Clear Close

IR (1]

- being white and the

4. € Three all-round lights n a wertical line where the highest and lowest of
these lights shall be red and the middle light shall be white

SUBMIT ANSWERS |

<Go Back I Cluit I
!@ Cone | | % Local intranet o

8.1.4 Sample Course

The course provided with this sample LM S contains one lesson. The lesson isasmple
"page turner”" written in HTML and JavaScript that consists of seven AUs. The lesson is
not meant to serve as "a great example of a how to develop learning content," but rather
as an example of how to communicate data between the LM S and the AUs using the

API. The AU HTML pages used in this lesson make use of atwo JavaScript "include’
files called APIWrapper.js and AUFunctions.js. This APIWrapper.js file contains a set of
"API wrapper" functions that encapsulate the functionality that an AU might use to
communicate with the LMS viathe API. The AUFunctions,js file contains a set of
navigation functions that is common to al of the AUs.

The API wrapper does not implement the API functions, but rather encapsulates the logic
needed to:

Find the APl in the LMS client framework
Call the desired API function

SCORM (1.0) Page 96

ADL Sharable Courseware Object Reference Model

Handle errors that might be generated by the call to the API function.
The AUs are writtenusing the wrapper, thus providing alevel of abstraction above the
actual implementation of the API and hiding the functionality of the communication
between the client and the server.

The lesson AUs consists of the following source files:

au0l.htm, au02.htm, au03.htm, au04.htm
au05.htm, au06.htm, au07.htm

AUFunctions,js (JavaScript): Contains JavaScript functions used by all of the lesson
HTML pages. It isincluded at runtime in each of the above HTML pages. (Something
similar to this might be provided by authoring tools to encapsulate general functionality
commonly built into all of the courses authored by that particular tool.)

8.1.5 Mapping Example Code to the SCORM

Figure8.1.5a
External SyStemSZ Learning
Content Server(s) HR, E-Commerce, ERP... Server
) L)L) G
Adapter Sample LMS
[| 1 Implementation
LMSLoginSerlet java
LMSResetDBServlet.java
LMSCMIServlet.java
LMSCourseServletjava
Adapter LMSLessonServlet java
_.‘ Server Side
Data Model T ;
Actual data sent $ Client Side
back and forth R ¢ < Launch
between content s - - | (starts content)
and LMS —> s Browser 4
CMICoreData java ! Yt
CMIScoreDate java . i A@%','ﬁgt,'ft’-”
. a e | .
CMITlme.jaVa AP "_ — .:. LMSMain.htm
Adapter ' AUOL htm LMSFrame htm
! AU02.htm LMSLogin.htm
i s LMSStart.htm
: AUO7.html LMSResetConfirmht
API picl* g

(Communications link e -
between content and LMS)

APl .java
ServletProxy java

SCORM (1.0) Page 97

ADL Sharable Courseware Object Reference Model

SCORM (1.0) Page 98

ADL Sharable Courseware Object Reference Model

8.1.6 Structure of Sample LMS Application

The following diagram illustrates the relationship of the SCORM Sample LMS files.

HTML Frame
LMSFrame.htm

Java Script
AUfunctions.js

I

Java Script
API Wrapper.js

Content
AUO01-07.htm

«<—— Assignable
Unit

Java Applet
(API Adapter)
APl java

v

Proxy
ServletProxy.java

API
Adapter

'

Writer
ServletWriter.java

Server
LMS[*|Servlet.java

SCORM (1.0)

Page 99

ADL Sharable Courseware Object Reference Model

SCORM (1.0) Page 100

ADL Sharable Courseware Object Reference Model

8.1.7 Flow of Sample LMS Application

The following diagram illustrates the flow of the sample SCORM LMS code:

LMSLogin LMSCourse Lesson “LMS”
Servlet.java Servlet.java Servlet.java ImsCMI
Servlet.java
\ \
< —= 4 <
2. Login request 3. Course menu 4.Course 6. Lesson 7. First AU (of 7in
made launched servlet invoked requested lesson) delivered
. ! ! .
Lmslogin.htm Student Course Lesson Selection AUOL K
] Menu Menu .ntm
Lmsmain.htm
1. APl adapter loaded 5. Lesson Selection 8. LMS tracks

Data using “gets
and “sets” issued
from the AU

8.1.8 API Wrapper JavaScript Code Fragment

The following code fragment is from APIWrapper.js in the SCORM Sample LMS
package. This code is used on the client side to locate the API and to call the APl in the
applet API.java.

function LMSInitialize()
{
var api = Get API();
if (api == null)

alert("Unable to locate the LM5's APl Inplenentation.\nLMSInitialize was not
successful . ");
return fal se;

}
/1l call the LMBInitialize function that should be inplenented by the API
var enptyString = new String("");
var initResult = api.LMSInitialize(enptyString);
if (initResult.toString() !'="1")

/1 LMBInitialize did not conplete successfully.
var err = ErrorHandl er();

}

return initResult;

}

function LMSFi nish()
{
var api = Get API();
if (api == null)
{

alert("Unable to locate the LMS's APl | npl enent ati on.\ nLMSFi ni sh was not
successful .");

}

SCORM (1.0) Page 101

ADL Sharable Courseware Object Reference Model

el se

api . LMSFi ni sh();
var err = ErrorHandl er();

}

return;

}
function LMSGet Val ue(nane)

Eunctl an LMBSet Val ue(nane, val ue)
Euht.:t-i (})n LMBConmi t ()

Eunct i (})n LMBGet Last Error ()

Euncu z)n LMBGet Error Stri ng(error Code)
Eunctl (i)n LMSGet D agnosti c(error Code)

function LMSIslnitialized()

{ ...}

function Fi ndAPI ()

i f(_Debug){alert("in FindAPI()");}
//ls it in the current w ndow?

i f (w ndow. docunent. APl != null)

{
i f(_Debug){alert("found api in this w ndow');}
return wi ndow. docunent . APl ;

/1 1s it in the wi ndow s opener?
if (w ndow. opener != null)

if (_Debug) {alert("w ndow opener is NOTI NULL");}
if (w ndow. opener. APl != null)

i f(_Debug){alert("found api in this wi ndow s opener.");}
} return w ndow. opener. APl ;

el se

/1 1ook in the openers window s franes...
i f (wi ndow. opener.parent != null)

if (_Debug) { alert("looking in wi ndow opener parent's franes");}
for (i=0; i<w ndow. opener.parent.frames.|ength; i++)

i f (w ndow. opener.parent.frames.iten(i). APl != null)
i f(_Debug){alert("found api in this window s opener's parent's

franes.");}
return wi ndow. opener.parent.frames.iten(i).APl;

}
}
}
}
// Is it in the current wi ndow s parent?
if (window parent !'= null)
i f (w ndow. parent.docunent. APl != null)
i f(_Debug){alert("found api in this windows parent.");}
return wi ndow. parent. APl ;
}
el se

/1 look in the parent wi ndow s franes...

SCORM (1.0) Page 102

ADL Sharable Courseware Object Reference Model

/] this is probably the nost likely place for it to be...
for (i=0; i<w ndow. parent.frames.|ength; i++)

if (wndow parent.frames.iten(i). APl != null)

i f(_Debug){alert("found api in this windows parents frames.");}
return wi ndow parent.frames.iten(i).APl;

}
}
}
}
/1l The APl was not found
i f (_Debug)

alert("couldn't find an APl inplenentation");

return null;

}
function Get API ()

return api Handl e;

}
8.1.9 Course Structure Format XML fragment

<?xm version="1.0"?>
<!--File Nane: MaritinmeNavigation.xm-->
<! DOCTYPE cour se SYSTEM "scocsf (1.0).dtd">
<!--This is an exanple of a course-->
<cour se>
<gl obal Properties>
<ext er nal Met adat a>
<sour ce>| EEE 3. 0</ sour ce>
<nodel > MSBP</ nodel >
<l ocati on>\ net adat a\ Mari ti emNavi gati on. xm </ | ocati on>
</ ext er nal Met adat a>
</ gl obal Properties>
<bl ock id="B1">
<obj ectiveRef target| Ds="0L"></objectiveRef>
<identification>
<title>Maritime Navigation</title>

<| abel s>
<curricul ar>UNI T</ curricul ar>
</ | abel s>

</identification>
<ext ensi ons>
<sour ce>Al CC CM AGR- 006</ sour ce>
<nodel >cm </ nodel >
<property>
<nane>di ffi cul t y</ name>
<val ue>easy</ val ue>
</ property>
</ ext ensi ons>
<bl ock id="B2">
<obj ecti veRef targetlDs=""></objectiveRef>
<identification>
<title>nland Rules of the Road</title>

<l abel s>
<curricul ar >MODULE</ curri cul ar>
</ | abel s>

</identification>
<ext ensi ons>
<sour ce>Al CC CM AGR- 006</ sour ce>
<nodel >cm </ nodel >
<property>
<nare>di f fi cul t y</ nane>
<val ue>easy</ val ue>
</ property>
</ ext ensi ons>

SCORM (1.0) Page 103

ADL Sharable Courseware Object Reference Model

<au id="Al">
<obj ecti veRef target| Ds="Q3"></objectiveRef>
<identification>
<title>References</title>
</identification>
<l aunch>

<l ocati on>htt p: // &*60; host > / Cour ses/ Cour se01/ Lesson01/ au0l1. ht M </ | ocat i on>
</ 1 aunch>
</ au>
<bl ock id="B3">
<obj ecti veRef target| Ds="O4"></objectiveRef>
<identification>
<title>Steering &*#38; Sailing Rules</title>

<l abel s>
<curricul ar >MODULE</ curri cul ar >
</ | abel s>
</identification>
<au id="A2">

<ext er nal Met adat a>
<sour ce>| MSBP</ sour ce>
<nodel > EEE 3. 0</ nodel >
<l ocat i on>\ net adat a\ au02Met aDat a. xm </ | ocat i on>
</ ext er nal Met adat a>
<obj ecti veRef target| Ds="(06"></0bjecti veRef >
<identification>
<title>Conduct of Vessels in any Condition of
Visibility</title>

<l abel s>
<curricul ar>LEARNI NG STEP</ curri cul ar >
</ | abel s>
</identification>
<l aunch>

<l ocation>http:// &*#60; host > / Cour ses/ Cour se01/ Lesson01/ au02. ht M </ | ocat i on>
</l aunch>
</ au>

8.1.10 Course Metadata XML Example

<?xm version="1.0" encodi ng="UTF-8"?>

<! -- DOCTYPE RECORD SYSTEM "http://ww. i msproj ect.org/xm /| NM-MO1. dtd" -->
<l-- Uses Master DID at IMS site. -->

<! DOCTYPE RECORD SYSTEM "I M5- MDO1. dt d" >

<l-- |If used with a local DID, use this DOCTYPE decl aration instead of Master
above. -->

<RECORD xm ns="http://ww. i nmsproject.org/ metadatal/">
<METAMETADATA>
<METADATASCHEME>
LOM 3.8
</ METADATASCHEME>
</ METAMETADATA>

<CGENERAL>
<TI TLE>
<LANGSTRI NGl nl and Rul es of the Road</LANGSTRI NG>
</ TI TLE>
<CATALOGENTRY>
<CATALOGUE>ADL Course Catal ogue | D</ CATALOGUE>
<ENTRY>
<LANGSTRI NG>1000</ LANGSTRI NG>
</ ENTRY>
</ CATALOGENTRY>
<CATALOGENTRY>
<CATALOGUE>Cour se Configurati on Managenent System Pat h</ CATALOGUE>
<ENTRY>

SCORM (1.0) Page 104

ADL Sharable Courseware Object Reference Model

<LANGSTRI NG>VCOB: / vob/ adl i / sour ce/ Sanpl eLMS/ Cour ses/ Cour se01/ </ LANGSTRI NG>
</ ENTRY>
</ CATALOGENTRY>
<CATALOGENTRY>
<CATALOGUE>U. S. Coast Quard, Comrandant | nstruction</ CATALOGUE>
<ENTRY>
<LANGSTRI NG>M6672. 2C</ LANGSTRI NG>
</ ENTRY>
</ CATALOGENTRY>
<LANGUAGE>en- US</ LANGUAGE>
<DESCRI PTI ON\>
<LANGSTRI NG>Basi c instruction on U S. Coast @uard and U. S. Regul ation of
Inl and Vessel Rules of Navigati on</ LANGSTRI NG
</ DESCRI PTI ON>
<KEYWORDS>
<LANGSTRI NG>Vessel </ LANGSTRI NG
<LANGSTRI NG>I nl and Navi gat i on</ LANGSTRI NG>
<LANGSTRI NG>Coast Quar d</ LANGSTRI NG
</ KEYWORDS>
</ GENERAL>

<LI FECYCLE>
<VERSI O\>
<LANGSTRI NG>1. 0</ LANGSTRI NG>
</ VERS| ON>
<STATUS>
<LANGSTRI NG>Fi nal </ LANGSTRI NG>
</ STATUS>
<CONTRI BUTE>
<ROLE>
<LANGSTRI NG>Aut hor </ LANGSTRI NG>
</ ROLE>
<CENTI TY>
<VCARD>
BEGA N VCARD
ORG Concurrent Technol ogi es Corporation; ADLI Project
END: VCARD
</ VCARD>
</ CENTI TY>
<DATE>
<DATETI ME>
2000- 01- 28
</ DATETI Me>
</ DATE>
</ CONTRI BUTE>
</ LI FECYCLE>

<TECHN CAL>
<FORMAT>
<LANGSTRI NG>t ext / ht ml </ LANGSTRI NG
</ FORVAT>
<LOCATI ON type="UR ">
/ Cour ses/ Cour se01/
</ LOCATI ON>
<REQUI REMENTS>
<TYPE>
<LANGSTRI NG>Br owser </ LANGSTRI NG
</ TYPE>
<NAVE>
<LANGSTRI NG>M crosoft | nternet Expl orer</LANGSTRI NG
</ NAMVE>
<M NI MUMVERSI ON>5. 0</ M NI MUWERSI ON>
</ REQUI REMENTS>
</ TECHNI CAL>

<EDUCATI ONAL>
<LEARNI NGRESOQURCETYPE>
<LANGSTRI NG>Narr ati ve Text </ LANGSTRI NG
</ LEARNI NGRESQURCETYPE>
</ EDUCATI ONAL>

SCORM (1.0) Page 105

ADL Sharable Courseware Object Reference Model

<Rl GHTS>
<COST>
<l-- yes or no -->
<LANGSTRI NG>no</ LANGSTRI NG>
</ COsT>
<COPYRI GHTOROTHERRESTRI CTl ONS>
<l-- yes or no -->

<LANGSTRI NG>ho</ LANGSTRI NG
</ COPYRI GHTOROTHERRESTRI CTI ONS>
<DESCRI PTI ON>
<LANGSTRI NG>Provi ded as-is; only to be used as an exanpl e. </ LANGSTRI NG
</ DESCRI PTI ON>
</ R GHTS>

<CLASSI FI CATI ON>
<PURPCSE>
<LANGSTRI NG>Educat i onal Obj ecti ve</ LANGSTRI NG
</ PURPOSE>
<DESCRI PTI ON>
<LANGSTRI NG>Thi s course will give the student a basic understanding of the
Inland Rul es of Navi gation. </ LANGSTRI NG
</ DESCRI PTI ON\>
<KEYWORDS>
<LANGSTRI NG>I nl and Navi gat i on</ LANGSTRI NG
</ KEYWORDS>
</ CLASSI FI CATI ON>
</ RECORD>

SCORM (1.0) Page 106

ADL Sharable Courseware Object Reference Model

8.1.11 Assignable Unit (Content) Metadata XML Example

<?xm version="1.0" encodi ng="UTF-8"?>

<! - - DOCTYPE RECORD SYSTEM "http://wwv. i nsproj ect.org/xm /| NM5-MO1. dtd" -->
<l-- Uses Master DID at IMS site. -->

<! DOCTYPE RECORD SYSTEM "1 M5- MDO1. dtd" >

<l-- |If used with a local DID, use this DOCTYPE declaration instead of Mster
above. -->

<RECORD xm ns="http://wwv i nsproj ect.org/ netadatal">
<METAMETADATA>
<METADATASCHEME>
LOM 3.8
</ METADATASCHEMVE>
<LANGUAGE>en- US</ LANGUAGE>
</ METAMVETADATA>

<GENERAL>
<TI TLE>
<LANGSTRI NG>Conduct of Vessels in any Condition of Visibility</LANGSTRI NG
</ TI TLE>
<CATALOGENTRY>
<CATALOGUE>ADL Course Catal ogue | D</ CATALOGUE>
<ENTRY>
<LANGSTRI NG>1000- 02</ LANGSTRI NG>
</ ENTRY>
</ CATALOGENTRY>
<CATALOGENTRY>
<CATALOGUE>Cour se Configurati on Managenent System Pat h</ CATALOGUE>
<ENTRY>

<LANGSTRI NG>VOB: / vob/ adl i / sour ce/ Sanpl eLMS/ Cour ses/ Cour se01/ Lesson01/ AU01</ LANGSTR
I NG
</ ENTRY>
</ CATALOGENTRY>
<LANGUAGE>en- US</ LANGUAGE>
<DESCRI PTI ON>
<LANGSTRI NG>Di scusses general rules of operation for vessels on inland
wat ers.
Topi cs di scussed include: Look-out, Safe Speed, Collision, Channels,
Traffic Separation. </ LANGSTRI NG
</ DESCRI PTI ON>
<KEYWORDS>
<LANGSTRI NG>Vessel </ LANGSTRI NG>
<LANGSTRI NG>Any Vi si bility</LANGSTRI NG
<LANGSTRI NG>Look- out </ LANGSTRI NG>
<LANGSTRI NG>Saf e Speed</ LANGSTRI NG>
<LANGSTRI NG>Col | i si on</ LANGSTRI NG>
<LANGSTRI NG>Channel s</ LANGSTRI NG
<LANGSTRI NG>Tr af fi ¢ Separ at i on</ LANGSTRI NG
</ KEYWORDS>
<AGGREGATI ONLEVEL>1</ AGGREGATI ONLEVEL>
</ GENERAL>

<LI FECYCLE>
<VERSI| ON>
<LANGSTRI NG>1. 0</ LANGSTRI NG>
</ VERS| ON\>
<STATUS>
<LANGSTRI NG>Fi nal </ LANGSTRI NG>
</ STATUS>
<CONTRI BUTE>
<ROLE>
<LANGSTRI NG>Aut hor </ LANGSTRI NG>
</ ROLE>
<CENTI TY>
<l-- Stub of a vCard entry with Formatted Name (FN) property -->
<VCARD>
BEG N: VCARD
ORG Concurrent Technol ogi es Corporation; ADLI Project

SCORM (1.0) Page 107

ADL Sharable Courseware Object Reference Model

END: VCARD

</ VCARD>

</ CENTI TY>

<DATE>
<DATETI ME>

2000-01-28

</ DATETI Me>

</ DATE>

</ CONTRI BUTE>
</ LI FECYCLE>

<TECHNI CAL>
<FORVAT>
<LANGSTRI NG>t ext / ht m </ LANGSTRI NG>
</ FORVAT>
<S| ZE>
14368
</ Sl ZE>
<LOCATI ON type="UR ">
au02. htm
</ LOCATI ON\>
<l--type of URl or TEXT-->
<REQUI REMENTS>
<TYPE>
<LANGSTRI NG>Br owser </ LANGSTRI NG
</ TYPE>
<NAVE>
<LANGSTRI NG>M crosoft |nternet Explorer</LANGSTRI NG
</ NAMVE>
<M NI MUWERSI ON>5. 0</ M NI MUWERS| ON>
</ REQUI REMENTS>
</ TECHNI CAL>

<EDUCATI ONAL>
<LEARNI NGRESOQURCETYPE>
<LANGSTRI NG>Narr ati ve Text </ LANGSTRI NG
</ LEARNI NGRESQURCETYPE>
<TYPI CALLEARNI NGTI M=>
<DATETI M=>
0000- 00- 00TOO: 05: 00
</ DATETI Me>
</ TYPI CALLEARNI NGTI ME>
</ EDUCATI ONAL>

<Rl GHTS>
<COST>
<l-- yes or no -->
<LANGSTRI NG>no</ LANGSTRI NG>
</ CCsT>
<COPYRI GHTOROTHERRESTRI CTI ONS>
<l-- yes or no -->

<LANGSTRI NG>no</ LANGSTRI NG
</ COPYRI GHTOROTHERRESTRI CTI ONS>
</ R GHTS>

<CLASSI FI CATI ON>
<PURPCSE>
<LANGSTRI NG>Educat i onal Obj ecti ve</ LANGSTRI NG>
</ PURPCSE>
<DESCRI PTI ON>
<LANGSTRI NG>Vessel Conduct </ LANGSTRI NG
</ DESCRI PTI ON>
<KEYWORDS>
<LANGSTRI NG>Vessel Conduct </ LANGSTRI NG>
</ KEYWORDS>
</ CLASSI FI CATI ON>
</ RECORD>

SCORM (1.0) Page 108

ADL Sharable Courseware Object Reference Model

8.1.12 Raw Media Metadata XML Example
<?xm version="1.0" encodi ng="UTF-8"?>
<! --DOCTYPE RECORD SYSTEM "http://ww. i nsproject.org/xm /I NM-MO1. dtd" -->
<l-- Uses Master DID at IMS site. -->
<! DOCTYPE RECORD SYSTEM "I M5- MDO1. dt d" >
<l-- |If used with a local DID, use this DOCTYPE decl aration instead of Master
above. -->

<RECORD xm ns="http://ww. i nsproj ect.org/ nmetadatal">
<METAMETADATA>
<METADATASCHEME>
LOM 3.8
</ METADATASCHEME>
<LANGUAGE>en- US</ LANGUAGE>
</ METAMETADATA>

<CGENERAL>
<TI TLE>
<LANGSTRI NG>Vessel Aground Li ghti ng</ LANGSTRI NG>
</ TI TLE>
<DESCRI PTI ON\>
<LANGSTRI NG
Picture showing lighting requirenents for inland vessel |ess than 50
meters in length in an aground condition.
</ LANGSTRI NG
</ DESCRI PTI ON>
<KEYWORDS>
<LANGSTRI NG>Vessel </ LANGSTRI NG>
<LANGSTRI NG>Li ght i ng</ LANGSTRI NG>
<LANGSTRI NG>Agr ound</ LANGSTRI NG>
</ KEYWORDS>
</ GENERAL>

<LI FECYCLE>
<VERS| O\>
<LANGSTRI NG>1. 0</ LANGSTRI NG
</ VERS| ON\>
<STATUS>
<LANGSTRI NG>Fi nal </ LANGSTRI NG>
</ STATUS>
<CONTRI BUTE>
<ROLE>
<LANGSTRI NG>Aut hor </ LANGSTRI NG>
</ ROLE>
<CENTI TY>
<l-- Stub of a vCard entry with Formatted Name (FN) property -->
<VCARD>
BEG N: VCARD
ORG Concurrent Technol ogi es Corporation; ADLI Project
END: VCARD
</ VCARD>
</ CENTI TY>
<DATE>
<DATETI ME>
2000- 01- 28
</ DATETI Me>
</ DATE>
</ CONTRI BUTE>
</ LI FECYCLE>

<TECHNI CAL>

<FORMAT>

<LANGSTRI NG>i mage/ j peg</ LANGSTRI NG
</ FORVAT>
<Sl ZE>

10612
</ Sl ZE>
<LOCATI ON type="UR ">

aground. j pg

</ LOCATI ON>

SCORM (1.0) Page 109

ADL Sharable Courseware Object Reference Model

<l--type of UR or TEXT-->
</ TECHNI CAL>

<EDUCATI ONAL>
<LEARNI NGRESOURCETYPE>
<LANGSTRI NG>Fi gur e</ LANGSTRI NG>
</ LEARNI NGRESQURCETYPE>
</ EDUCATI ONAL>

<Rl GHTS>
<COST>
<l-- yes or no -->
<LANGSTRI NG>no</ LANGSTRI NG>
</ CCsT>
<COPYRI GHTOROTHERRESTRI CTI ONS>
<l-- yes or no -->

<LANGSTRI NG>no</ LANGSTRI NG>
</ COPYRI GHTOROTHERRESTRI CTI ONS>
</ R GHTS>

</ RECORD>

SCORM (1.0) Page 110

ADL Sharable Courseware Object Reference Model

8.2 Course Structure Format Browser/Editor

The CSF Browser Editor is ajava application that can create, edit, display, and write CSF
XML Files. It runs on top of the IBM XML For Java Parser using the Simple API for
XML (XML) driver available from IBM’s AlphaWorks:

http://www.al phaworks.ibm.com/formula/ XM L

Note: As of the release of this document, the CSFBrowser is “alpha’ code. The

application and source code will be available on the ADL Website (www.adlnet.org)
soon after the release of this document.

Eg_;,aADL Coursze Structure Format Browser [verzion 0.8.1] :MaritimeM avigation. xml

File Edit View
- XML Representation of Course (Before Edits) - ADL Course Structure (Editable)
—/ADL CSF ML Root [~ | @ 03 ADL Course Root [~
@ [course % [hinck; Maritime Navigation
@ [Jhlock id=B1 @ [block: Inland Rules of the Road

§ [identification
[title: Maritime Mavigation
@ [Jlabels
[curricular UNIT
% [block id=A2
@ [T identification
D title: Inland Rules of the Road

D au: Refarences
@ [hlock Steering : & Sailing Rules
D au: Conduct of vessels in any Condition of Visihility
D au: Conduct of Yessels in Sight of One Another
D au: Conduct of Vessels in Restricted Visibility
D au: Lights : & Shapes
D au: Sound : & Light Signals

§ Cliabels [au: Exam
p— 9:1'-'”'“”3“ MODULE [block: International Rules ofthe Road
au ig=

[block: Charting
@ 7 objective: objectives
® [ohjective: Inland Rules ofthe Road

@ [identification
D title: References

® 8 aunch) = D ohjective: International Rules ofthe Road
[location: iCoursesiCoursed1iLessand1faud1 himl ¥ |/ =3
r Information Window 1~ Block - B1-
=%xml version="1.0" encoding="UTF-&"?> | | Block Title Maritirme Mavigatian
=IDOCTYPE course SYSTEM "Filersco_csf(s).did" = | —
|\Description
=course=
=hlock id="B1"= | Curricular Label UMIT
=identification= |Developer Label
=title=Maritime Mavigation=itle= Prerequisites
=labels= | i i
<curricularsUNIT=icurriculars Completion Requirements
=ilabels= |Objective Reference
sfdentification; [External Metadata Model
=hlock id="B2"=
: : ; |External Metadata Source
=identification=
<titla=Inland Rules of the Road=tities |External Metadata Location
=lahels=
=curricular=MODULE <icurricular=
=flabels=

=fidentification=

4|

-

SCORM (1.0) Page 111

ADL Sharable Courseware Object Reference Model

8.2.1 Overview of CSF Browser/Editor

Thistool was designed principally to exercise all of the aspects of the CSF Specification.
It parses an XML CSF file and displays the file's “original” XML structure. Then it
maps each element into a Java “data model” using a separate course tree. The course
structure tree is editable and can be written back out as XML. Thus this utility tests the
CSF through the input, display, and output translations of CSF data.

The CSF Browser reads XML CSF files and validates them against the DTD specified in
the XML record. The application has four view panes:

XML Representation of Course Structure: This pane displays in atree format
each of the XML elements exactly as they were parsed when a CSF XML fileis
opened. Parsing errors during loading are displayed in the Information Pane.
This tool makes viewing the contents of a CSF XML file easier than reading the
raw code. The XML Representation pane is not editable and only displays
initially loaded files.

ADL Course Structure: The Course Structure pane contains another tree similar
to the XML Representation pane, except that it only shows course global
Properties block, au, and objectives in the tree. This makes viewing the course
structure easier.

The Course Structure treeis editable. Clicking on course, global Properties
block, au, or objectives brings up an editor for each of the elements of these
groups. Nodesin the tree may be added, deleted, or moved.

Information Pane: Displays guidance information about items selected and
displays relevant text messages or outputs when selected.

Editor Pane: Displays elements of course, global Properties block, au, or
objectives tree nodes when they are selected.

After editing, CSF trees may be saved as CSF XML files or displayed in the Information
Pane.

SCORM (1.0) Page 112

9. Acronym List

ADL Sharable Courseware Object Reference Model

AICC Aviation Industry CBT Committee

ADL Advanced Distributed Learning [Initiative]
ADL-ColLab ADL Collaboration Laboratory

APl Applications Programming Interface

AU Assignable Unit

CSF Course Structure Format

CMI Computer Managed Instruction

DC Dublin Core

DoD Department of Defense

DTD Document Type Definition

HTML Hypertext Markup Language

|EEE Ingtitute of Electrical and Electronics Engineers
IMS Instructional Management Systems [Project]
1SO International Standards Organization

LMS Learning Management System

LOM Learning Object Metadata

SCO Sharable Courseware Object

SCORM Sharable Courseware Object Reference Model
SEL Standard Extension Library

XML Extensible Markup Language

SCORM (1.0) Page 113

This page was intentionally |eft blank.

ADL Sharable Courseware Object Reference Model
Appendix A — Supporting Documents

A.1 SCORM Course Structure Format DTD

<l--*** gcorntsf(1.0).dtd
*** course: Root |evel of Course Structure representation-->
<! ELEMENT course (gl obal Properties?, bl ock, obj ectives?) >

<l--*** g| obal Properties: Properties of the course as whole-->
<! ELEMENT gl obal Properti es (external Met adat a+, curri cul ar Taxonony?, ext ensi ons*) >

<l--*** plock: A grouping of related structural elenents.
Bl ocks contain assignable units or other bl ocks.
Bl ocks al ways contain other course el enents.
This holds an unique (to this course) ID identifier
for a particular block.
IDs are generated by the application (e.g., an LM5)
that creates a CSF XM. file
(other elenents may refer to this unique ID)-->

<! ELEMENT bl ock ((external Met adat a*, obj ecti veRef*,identification,prerequisites?,
conpl eti onReq?, ext ensi ons*, (au* | block*)+) | blockAlias) >

<! ATTLI ST bl ock
id ID #REQURED >

<l--*** objectives: Root |evel of objectives tree;
Statements of skills, know edge, and attitudes
to be acquired by the student.-->

<! ELEMENT obj ectives (objectivet) >

<l--*** external Metadata: The value of this elenent refers
or points to the location of the netadata
describing this course.-->

<! ELEMENT ext er nal Met adata (source, nodel , | ocation) >

<l--*** curicul ar Taxonony: O gani zati onal mnethodol ogy
used to construct the course-->
<! ELEMENT curri cul ar Taxonony (source?, nodel , | ocati on?) >

<l--*** extensions: defines extensions to course el enent
definitions and their source-->
<! ELEMENT ext ensi ons (source?, nodel, | ocation?, property+) >

<l--*** objectiveRef: Reference to a particular objective
in the objective hierarchy-->

<! ELEMENT obj ect i veRef EMPTY >

<! ATTLI ST obj ecti veRef
target| Ds | DREFS #! MPLIED >

<l--*** jndentification: ldentifies course context-
specific information-->
<! ELEMENT identification (title,description?|abels?) >

<l--*** prerequi sites: Expression indicating what a student
must acconpl i sh before beginning this course el ement.
Course elenents that a student nust conpl ete before begi nning
a block or assignable unit. It uses a "script" that defines
the logical rules to be applied The script type nmust be defined.
e.g., <prerequisites type="aicc_script"> <![CDATA] B1&B2&A1]] >
</prerequisites> -->

<! ELEMENT prerequisites (#PCDATA) >

<! ATTLI ST prerequisites

SCORM (1.0) Page 115

ADL Sharable Courseware Object Reference Model

type CDATA #| MPLI ED >

<l--*** conpl eti onReq: Course el ements that a student nust conplete

before considering a given structure el enment conplete. It uses

a "script" that defines the logical rules to be applied. The

script type nust be defined. e.g.,

<conpl etion type="ai cc_script"> <! [CDATA] BL&B2&A1]]> </ conpl eti on>-->
<! ELEMENT conpl eti onReq (#PCDATA) >

<! ATTLI ST conpl eti onReq
type CDATA # MPLIED >

<l--*** au: An AUis the smallest element of instruction or testing to
which a student may be routed by a LM5. It refers to "content"
| aunched by the LMS system
This holds a unique (to this course) IDidentifier for a particular
au |Ds are generated by the application (e.g., an LMS) that creates
a CSF XM. file (other elenments may refer to this unique ID)-->
<l ELEMENT au ((external Met adat a*, obj ecti veRef*,identification, prerequisites?,
conpl eti onReq?, ti neLi mt?, | aunch?, nast er yScor e?, ext ensi ons*) |
auAlias) >

<I ATTLI ST au
id ID #REQU RED >

<l--*** plockAlias: Reference to a previously defined bl ock
(permts one block to be used nore than once within a course)-->
<! ELEMENT bl ockAl i as EMPTY >

<! ATTLI ST bl ockAl'i as
targetID 1D #! MPLIED >

<l--*** objective: A statement of skills, know edge, and attitudes to be
acquired by the student. This holds an unique (to this course) ID
indentifier for a particular objective IDs are generated by the
application (e.g., an LM5S) that creates a CSF XM file
(other elements may refer to this unique ID)-->
<! ELEMENT obj ective ((external Metadata*, assi gnnment Ref*,identification,
prerequi sites?, conpl eti onReq?, ext ensi ons*, obj ective*) |
obj ectiveAias) >

<! ATTLI ST obj ecti ve
id ID #REQURED >

<l--*** gource: Authority or source of data nmodel wreference to a spec. if available
e.g., "AICC AGROLO v3.4", or ARW TRADCC specl123, or "IMNMSBP v4.2"-->
<! ELEMENT source (#PCDATA) >

<l--*** mpdel: Name of a specific data nodel used by this course
e.g., "cm", or "ARW314", or "IM5 v1.0"-->
<! ELEMENT nodel (#PCDATA) >

<l--***]ocation: UR Location-->
<! ELEMENT | ocation (#PCDATA) >

<l--*** property: Nanme/value pair extension for this course-->
<! ELEMENT property (nane,value) >

<l--*** title: Context specific title.
May be used by an LMS systemin nmenus, screens, etc.-->
<IELEMENT title (#PCDATA) >

<l--*** description: Context specific textual information about the course el enent.
It may contain the purpose, scope, or sunmary. (Defined by course author)-->
<! ELEMENT description (#PCDATA) >

<l--***] abels: Context specific local |abel (e.g., unit, chapter,
| earni ng step)-->
<! ELEMENT | abel s (curricul ar?, devel oper?) >

<l--*** Tine values or actions associated with this au in this context-->

SCORM (1.0) Page 116

ADL Sharable Courseware Object Reference Model

<IELEMENT tineLinmit (rmaxTineA | owed?, timeLimtAction?) >

<l--***] gunch: |nfornati on needed by an LM5S to | aunch an au-->
<l ELEMENT | aunch (Il ocati on, paraneter String?, dat aFr onLM5?) >

<l--*** gcore: Values to be used in this course context for tracking
score within an au-->
<! ELEMENT masteryScore (#PCDATA) >

<l--*** auAlias: Reference to a previously defined au
(permits one au to be used nore than once within a course-->
<! ELEMENT auAli as EMPTY >

<! ATTLI ST auAli as
targetID ID #| MPLIED >

<l--*** assignnentRef: Reference to a particular block or au el enent
in the course structure hierarchy e.g.,
<assi gnnment Ref "target| Ds="B1, A23"/>-->

<! ELEMENT assi gnnent Ref EMPTY >

<! ATTLI ST assi gnnment Ref
rel ati on CDATA #| MPLI ED
targetl Ds | DREFS #| MPLIED >

<l--*** objectiveAlias: Reference to a previously defined objective

(pernits one objective to be used nore than once within a course)-->

<! ELEMENT obj ectiveAlias EMPTY >

<! ATTLI ST obj ectiveAli as
target| D | DREF #l MPLI ED >

<l--*** name: Descriptive nane of a course property extension
e.g., "difficulty" (as in degree of)-->
<! ELEMENT nane (#PCDATA) >

<I--*** yal ue: Value associated with the naned extension
e.g., "easy"-->
<! ELEMENT val ue (#PCDATA) >

<l--*** curricular |abel: Local narme of course el enent
e.g., "UNT", "MODULE", "LEARNI NG STEP"-->
<l ELEMENT curricul ar (#PCDATA) >

<l--*** devel oper |abel: an organization-specific identifier (e.g., D509)-->

<! ELEMENT devel oper (#PCDATA) >

<l--*** naxTi neA | oned: The armount of tine the student is allowed
to have in the current attenpt on the |esson.-->
<! ELEMENT naxTi neAl | oned (#PCDATA) >

<l--*** timeLimtAction: What the Iesson is to do when the max tine
al l owed is exceeded. Al CC exanples: "exit", "continue",
"message", "continue".-->

<! ELEMENT tineLimtAction (#PCDATA) >

<l--*** parameterString: String of characters needed to successfully
I aunch a content au-->
<! ELEMENT paraneterString (#PCDATA) >

<l--*** dataFronLMs: unconstrained (undefined) intialization data expected
by content when it is launched by the LM -->
<! ELEMENT dat aFronlLMs (#PCDATA) >

SCORM (1.0)

Page 117

ADL Sharable Courseware Object Reference Model

A.2 Course Structure Format Mapping to AICC Structure

CSF Element AICC Name Contextualized Definition List | Lev Data Type
Name el
Global Properties Properties Information that applies to the S 1
course as a whole.
GlobalProperties.externalMetadata |--Creator Name of the vendor and/or * 1 CMIString256
(located in external metadata record) author of the course.
GlobalProperties.externalMetadata |--Identifier Unique label for the course. S 1 CMIldentifier
(located in external metadata record)
GlobalProperties.externalMetadata |--System Predominant authoring system S 1 DString
(located in external metadata record) used to create the course.
(Root)block.identification.title |--Title Common name given to course. | S 1 CMIString256
GlobalProperties.externalMetadata
(can also be located in external
metadata record)
GlobalProperties.externalMetadata |--Level Indicator of the complexity of S 1 CMIString256
(located in external metadata record) structure and sequencing data.
|--Max Block Number of members in most S 1 CMIlInteger
Members populous block.
|--Max Objective | Number of members in most S 1 CMIInteger
Members populous objectives relationship.
|--Total AU's Total number of unique S 1 CMIInteger
assignable units in the course.
|--Total Blocks Total number of blocks in the S 1 CMIInteger
course.
|--Total Total number of objectives S 1 CMIInteger
Objectives (simple and complex) in the
course.
|--Total Complex | Total number of complex S 1 CMIInteger
Objectives objectives in the course.
GlobalProperties.externalMetadata |--Version The revision number of the IEEE | S 1 CMIString256
(located in external metadata record) CMI Standard on which the
course sequencing data is
based.
(Root)block.identification. |--Description Textual information about the S 1 CMIString4096
description course.
GlobalProperties.externalMetadata
(can also be located in external
metadata record)
|--Max Normal The maximum number of S 3A | CMlinteger
assignable units that may be
taken for credit and incomplete.
(root) block Structure Information on organizationand | S 1
sequencing of the course.
block |--Block A grouping of related structural + 1
elements.
block.identification.labels.developer |--|--Identifier Developer created unique label S 1 CMIString256
for block.
Block id |--]--System Course unique identifier created | S 1 CMISldentifier
Identifier by the CMI system.
SCORM (1.0) Page 118

ADL Sharable Courseware Object Reference Model

CSF Element AICC Name Contextualized Definition List | Lev Data Type
Name el
Block.identification.title |--|--Title Commonly used name for the S 1 CMIString256
block.
Block.identification.description |--|--Description | Textual summary of block's S 1 CMIString4096
contents.
Block.prerequisites |--|--Prerequisite | Expression identifying what a S 2 CMiILogic
student must accomplish before
beginning the block.
Block.completionReq |--|--Completions | What a stuident must do to gain a | + 2 -
specific status for a block.
[--|--|-- Expression that may be S CMILogic
Requirement | evaluated as true or false.
|--|--|--Status The credit given to a student S 2 CMIVocabulary
when the requirements
expression is true.
|--|--|--Next AU Forced assignment when status | S 2 CMiSldentifier
is true.
|--|--|--Returnto | Forced assignment after leaving | S 2 CMiSldentifier
Next AU.
Au |--Assignable Information relating to an * 1
Unit assignable unit.
Au.identification.labels.developer |--|--Identifier Developer created unique label S 1 CMIString256
for the assignable unit.
Au.id |--]--System Course unique identifier created | S 1 CMiSIdentifier
Identifier by the CMI system.
Au.identification.title |--|--Title Commonly used name for an S 1 CMIString256
assignable unit, block, objective,
or complex objective.
Au.identification.description |--|--Description | Textual summary of unit's S 1 CMIString4096
contents.
Au.identification.label.curricular |--]--Type Developer defined category for S 1 CMIString256
(in most cases) AU.
Au.launch.parameterString |--|--Launch Line | The string of characters needed | S 1 CMIString256
to successfully launch an
executable program.
Au.launch.location |--|--File Name The full identifier of the files + 1 CMIString256
containing the content of the
lesson.
|--]--Max Score Largest raw score that can be S 1 CMIDecimal
reported by the lesson.
Au.masteryScore |--|--Mastery The minimum raw score required | S 1 CMIDecimal
Score for the student to pass the
lesson.
Au.timelimit. naxTimeAllowed |--|--Max Time Amount of time permitted for a S 1 CMITimespan
Allowed student's single use of a lesson.
Au.timelimit.timeLimitAction |--|--Time Limit | What the lesson should do when | S 1 CMIVocabulary
Action the max time allowed is
exceeded.
Au.externalMetadata |--]--System Authoring system used to create | S 1 CMIString256
(located in external metadata record) Vendor the lesson.
Au.launch.dataFromLMS |--|--Launch Unique information required by S 1 CMIString4096
Data the lesson's design.

SCORM (1.0)

Page 119

ADL Sharable Courseware Object Reference Model

CSF Element AICC Name Contextualized Definition List | Lev Data Type
Name el
Au.prerequisites |--|--Prerequisite | Expression identifying what a S 2 CMILogic
student must accomplish before
beginning the assignable unit.
|--|--Completions | What a student must do to gaina | + 2 -
specific status for an assignable
unit.
Au.completionReq [--]--|-- Expression that may be S 2 CMILogic
Requirement | evaluated as true or false.
|--|--|--Status The credit given to a student S 2 CMIVocabulary
when the requirements
expression is true.
|--|--]--Next AU Forced assignment when status | S 2 CMiSIdentifier
is true.
|--|--|--Returnto | Forced assignment after leaving | S 2 CMiSlIdentifier
Next AU.
Au.objectivesRef [--|--|-- Objective that is in the * 2 CMiSldentifier
Embedded assignable unit.
Objectives
(Root) objectives Objectives Measurable learning goal. d 3B |-
Objective.identification.label. |--1dentifier Developer assigned unique label | S 3B | CMIString256
developer for objective.
Objective id |--System Course unique identifier created | S 3B | CMISlIdentifier
Identifier by the CMI system.
Objective.identification. title |--Title Commonly used name for the S 3B | CMIString256
objective.
Objective.identification.description |--Description Textual summary of the S 3B | CMIString4096
objective.
Objective.assignmentRef |--Member IDs CMI assigned unique label for * 3B | CMiSIdentifier
each course element in the
objective.
Objective.completionReq |--Completions What a student must do to gaina | + 3B -
specific status for an objective
[--|-- Expression that may be S 3B | CMILogic
Requirement | evaluated as true or false.
|--|--Status The credit given to a student S 3B | CMIVocabulary
when the requirements
expression is true.
SCORM (1.0) Page 120

ADL Sharable Courseware Object Reference Model

Appendix B — AICC API Specification

This appendix, is excerpted in its entirety from AICC Document No. CMI001: “CMI
Guidelines for Interoperability” Version 3.0.1 (www.aicc.org). The excerpted portion
that follows is aso section B in the AICC document.

SCORM (1.0) Page 121

AlICC Appendix B: API-based CM| Communication CMI Guidelines

Appendix B: API-based CM| Communication

B.1 I ntroduction

API This appendix describes an Application Programming Interface (API) implementation
for the AICC Computer Managed Instruction (CM1) standards. It defines an API which
may be used over the Web by |earning content to communicate with a Learning
Management System (LMS). In this document a CMI system may be thought of asa
separate management system or a subset of the functionality of an LMS.

This document also defines a mechanism for launching content that enables an LM Sto
"bind" the LM S neutral API to an LM S specific data transfer mechanism.

B.1.1 HTTP Implementation

Appendix A of this document, defines data exchange in terms of HACP (HTTP AICC
CMI Protocol), an HTTP-based protocol. HACP has proven successful in commercial
products and in large-scale LM S applications. However, the average content devel oper
finds HACP difficult to understand and some LM S applications require protocols other

than HTTP.
LMS
CMI L esson
Standardized:
Protocol
Format
Data

B.1.2 API Implementation \/

Rev 3.0
1-Sep-99 122 CMI1001

Description

Advantages

B.1.3

ADL Sharable Courseware Object Reference Model

This API standardizes the way content sends and receives information. It assumes that
content will communicate using the widely supported ECMA Script calling
conventions °. ECMA Script was selected as the method for implementing this API
since nearly all browser platforms natively support it. This standard defines several
calls, the datain these calls, and the format of that data.

Thefigure below illustrates what is standardized. Note that the communication of the
ECMA Script with the LM Sis outside the scope of this standard. | mplementations of

the communications of the JavaScript object with the LMS may vary from product to
product.”

L esson

Standardized

Format
Data

There are several reasons for expanding the number of |EEE implementations to
include an APl standard in addition to an HTTP-based standard.

Generally speaking, an API is more abstract and implementation neutral than an
approach based on a specific protocol such as HTTP. A content APl essentially
“hides’ the implementation details of communication with an LMS.

Another advantage of an API isthat it can make it easier for the content developer to
understand and use communication with the LMS. Another advantage is the ability of
asingle APl to work with several different datamodels. And finally, an API enables
learning content, without being changed, to work with different data transfer
mechanisms.

The approach defined in this document simplifies the creation of CMI compliant
content by allowing content developersto think in terms of ahigher-level API. This
document also defines how to support the AICC and IEEE CMI data models.
Although designed to support the CMI data model, the API defines ageneric
capability that can be applied to related data models as these are standardized.

Content using the API can be reused without modification with different data transfer
mechanisms to suit application needs and with future versions of HACP asthese are
defined. The LMS dynamically determines which data transfer mechanism to use
when content is launched.

Two Web Implementations

> ECMAScript isthe 1SO standard version of JavaScript. In this document the use of the term
"JavaScript" is actualy a reference to ECMA Script.

SCORM (1.0)

Page 123

B.2

Two viewpoints

B.2.1

Levels

For the LMS

ADL Sharable Courseware Object Reference Model

The API standards defined here may be used to complement the HTTP standards
already defined in Appendix A. HTTP may be thought of as one possible
implementation for communication. In other words, an LM S can support either an API
or HTTP implementation or both implementations simultaneously.

L esson
Standardized Standardized
Protocol
Format
Data

Maps
Conformance Rules &

Conformance to this standard may be looked at from two viewpoints, that of the
learning content and that of the LMS.

Obligation

There are three level s of obligation for the API's and the data elements described in
this standard:

- Mandatory

- Optional

- Extension

Obligations for the content and LM S are different.

Mandatory means that the LM S shall perform the action that the API callsfor. If the
action isto return avalue to the content, then the call must succeed in returning avalue
of the proper format and range. Additionally, if the action isfor the content to set a
value, then that value must assume the form requested by the content, and be returned
if requested in the future.

Optional means that a conforming LMS may not respond at all to the parametersin a
get value or set value call. A conforming LMS may support many options.

SCORM (1.0)

Page 124

For content

B.2.2

ADL Sharable Courseware Object Reference Model

An extension isan API or data element that is not described in this standard.
Extensions may be supported by an LMS. However, extension API's may not perform
the same function as a defined API; and extension data elements may not contain the
same semantic values as defined data elements. If extensions are used to duplicate
mandatory and optional features, the LM S is non-conforming.

Mandatory means that the content shall execute the API. Only two APl'sare
mandatory for content: LM SlInitialize and LM SFinish.

Optional means that the content may execute the API with the specified parameter and
value at least once. Futhermore, the parameter and value shall be in the proper format
and range.

An extension isan API or data element that is not described in this standard.
Extensions may be supported by learning content. However, extension API's may not
perform the same function as a defined API; and extension data elements may not
contain the same semantic values as defined data elements. If extensions are used to
duplicate mandatory and optional features, the learning content is non-conforming.

CMI Responsibilities

The mechanism described here assumes a clean separation between the API function
calls used in content and the API implementation. The API function calls are
embedded in content. The API implementation is provided by the LM S when content
islaunched.

For browser and Web-based content, the LM S shall launch the content from a window
that contains the APl implementation, or must provide a parent frame that contains the
APl implementation.

The APl implementation provided by the LM S must support all the API function calls
described in this document as required.

The functionsto "get" and "set" data element values are generic in nature and do not
specify particular data elements. Data elements can be retrieved from the LM S using
the LM SGetValue function and modified using a LM SSetValue function. Regardless
of implementation details, if a data element is supported by the LM S, an LM SSetValue
function call shall affect the value returned by a subsequent LM SGetV alue function
call on that same data element.

All return values shall be strings which are convertible to the designated data type.

The LM S shall support the ability of the content to "get" and "set" the
"communication" data elements defined as mandatory in this standard. "Support"
means that when the content executesan " LM SGetValue" on an element, alegal
value of the proper format and type and range will be returned. When the content
executesalegal " LM SSetValue" on a supported element, that value will be taken and
the appropriate value returned when the next " LM SGetValue" on it is executed.

The LM S may support the ability of the content to "get" and "set" the optional data
elements.

SCORM (1.0)

Page 125

ADL Sharable Courseware Object Reference Model

The LMS may also support extensions not defined in this standard as long as those

extensions do not duplicate any mandatory or optional features. Additionally, the
support of any extensions must not cause the failure of any content not using the

extensions.

The table below summarizes the requirements for a conforming LMS.

LMS Conformance Requirements

- Supports the following transactions
LMSiInitialize
LMSFinish
LMSGetValue
LMSSetValue
LMSCommit
LMSGetLastError
LMSGetErrorString
LMSGetDiagnostic
- May support security transactions
- Supports all mandatory elements
- LMSGetValue shall succeed
- LMSSetValue shall succeed
- May support any or all optional elements
- LMSGetValue may succeed
- LMSSetValue shall succeed
- May support extension elements if they do not duplicate
defined mandatory or optional elements
- LMSGetValue may succeed (or may fail)
- LMSSetValue may succeed (or may be ignored)
- Supported elements shall be proper type
- Supported elements shall be in proper range
- Keywords are all supported

SCORM (1.0)

Page 126

ADL Sharable Courseware Object Reference Model

B.2.3 Content Responsibilities
Content shall be able to call ECMAScript functionsin a"foreign window". The
content does not have to be developed in ECMA Script but shall be ableto call it. This
capability enables the clean separation between the function calls used in content and
the implementation of those function calls provided by alearning management system.
For conforming Assignable Units, content shall call the LM Slnitialize function before
calling any other API functions. If it callsthe Initialize function successfully, it shall
also call the LM SFinish function before it terminates, even if it does not call any other
API functions.
Content may support the required set of "communication” data elements defined in the
AICC/IEEE Web CMI specification.
The table below summarizes the requirements for conforming content.
Conformance Requirements for Content
Must support the following transactions:
- Initialize
- Zero or more transactions of:
- LMSGetValue(X)
- LMSSetValue(X,Y)
- Other
- Finish
- X is an optional or extension data element
- 'Y must be in range
- Y must be the right type
SCORM (1.0) Page 127

B.23.1

B.2.3.2

ADL Sharable Courseware Object Reference Model

Binding M echanism

L earning content shall communicate with an LM S system through a JavaScript API.
This API will be part of an ECMAScript (JavaScript) object attached to either a parent
window or the “opener” window for the HTML page. The content will obtain the API
object by checking for its existence on any parent window or the opener window. The
following JavaScript example demonstrates how this might work:

/I returnsthe LM S API object (may be null if not found)
FindAPI(win)
{
if (win. APl I=null)
return win.API;
elseif (win.parent == null)
return null;
else
return FindAPI (win.parent);

}

/l obtainthe LMS API
API = FindAPI(window);
If (APl == null)
API = FindAPI(window.opener);

Parameter |dentification

The parametersin the API function calls have two or more parts. Each partis
separated by aperiod (dot). Thefirst part isaways the name of the datamodel. The
second part is always the name of an element in the data model. Subsequent parts are
either the name of an element in the data model, or a number, which refersto a
location within the preceding data element which, isan array.

datamodel .element

datamodel .element.element

datamodel .element.number.el ement
datamodel .el ement.number.element.number

Data model indicates which data model the value or return value is based on. Inthis
document the data model is"CMI" as defined in the AICC and |EEE CM|I standards.

The highest level of element is sometimes referred to as a Group in the CMI data
model. In thisdocument the word "category" is used interchangeably with the word
"group.” Each group element has a unique name in the CM| data model.

SCORM (1.0)

Page 128

B.3

TheAPI's

ADL Sharable Courseware Object Reference Model

Element refersto a specific namein the CMI data model. 1n the AICC documentation,
each element that is a sub-element or member of another element isreferred to asa
keyword or afield. Some sub-elements may have the same name. To enable precise
identification, the element (sub-element) name must always be accompanied by the
name of the group in which it appears.

Number isasimpleinteger that refersto the location in an array, if the named valueis
inanarray. Thefirst elementinan array isO.

APl Set

The set of API function calls consists of the following:
LMSiInitialize()
LM SFinish()
L M SGetV a ue(cmi.group.element)
L M SSetV alue(cmi.group.element, value)
LMSCommit()
LM SGetL astError()
LM SGetErrorString(errornumber)
LM SGetDiagnostic(parameter)
Security Request/Respond --- TBD

SCORM (1.0)

Page 129

B.3.1

B.3.2

ADL Sharable Courseware Object Reference Model

API General Rules

Thefollowing list summarizes the usage rules for the API.

- Thefunction names are all case sensitive, and must always be expressed
exactly as shown above.
The function parameters or arguments are case sensitive. All parametersare
lower case.
Thefirst symbol in the data element name identifies the data model. For
example, "cmi" indicates the AICC/IEEE CMI data model. This expands the
functionality of these API's by allowing the same API to be used with other
data models.
There are three reserved keywords. These are all lower case and proceeded by
an underscore.
= _version
= _children
= _count
When LM SGetValueis executed, it returnsthe last set valueif there was one.

Handling Lists

There are several data elements that appear in alist or an array. An example of this
would be objective status. There may be more than one objective covered in alesson,
and a student may be allowed to experience an objective more than once.

To get or set valuesin alist, the index number may be used. The only time an index
number may be omitted is when there is only one member in a potential list. Index
numbering starts at 0. If avalueisto be appended to the list, the Assignable Unit must
know the last index number used.

If the student is entering the lesson for the second time, the _count keyword can be

used to determine the current number of recordsin thelist. For instance, to determine

the number of objective records currently recorded, the following API would be used:
LM SGetValue("cmi.objective._count™)

If the lesson does not know the count of the objective records, it can begin the current
student count with 0. Thiswould overwrite any information about objectives currently
stored in the first index position. Overwriting or appending is adecision that is made
by the lesson author when he creates the lesson.

Elementsin alist are referred to with a dot-number notation (represented by .n). For
instance the value of the status element in the first objectivein alesson would be
referred to as"cmi.objective.O.status". The status element in the fourth objective
would be referred to as " cmi.objective.3.status'. If astudent experienced the first
objective twice, there could be two status's associated with the first objective. These
would be identified as "cmi.objective.0.status.0" and " cmi.objective.0.status.1".

SCORM (1.0)

Page 130

ADL Sharable Courseware Object Reference Model

SCORM (1.0) Page 131

ADL Sharable Courseware Object Reference Model

API Function Table

Function Description API Call Return Value

Initialize The content must call this function before calling any other | LMSinitialize() A string convertible to
API function. It indicates to the LMS system that the CMIBoolean
content is going to communicate. The LMS can take any
initialization steps required in this function.

Finish The content must call this function before it terminates, if it | LMSFinish() None
successfully called LMSiInitialize at any point. It signals to
the LMS that the content has finished communicating. The
content may not call any API function except
LMSGetLastError after it calls LMSFinish

Get a value This is used to determine values for various categories and | LMSGetValue(cmi.category) A string convertible to
elements in the CMI data model. Only one value is LMSGetValue(cmi.category.element) appropriate data type
returned for each call. The category and/or element is
named in the argument.

Set a value This is how data categories and elements get values. The LMSSetValue(cmi.category, value) None
argument indicates which category or element is being set. | LMSSetValue(cmi.category.element, value)
Only one value may be set with a single function call.

Send cache to If the ECMASCcript is caching LMSSetValue values, this call | LMSCommit(parameter) None

LMS requires that any values not yet sent to the LMS be sent.
Determine error The content must have a way of assessing whether or not LMSGetLastError() A string convertible to

code

any given API call was successful, and if it was not
successful, what went wrong. This routine returns an error
code from the previous API call. Each time an API function
is called (with the exception of this one), the error code is
reset in the API. The content may call this any number of
times to retrieve the error code, and the code will not
change until the next API call.

CMlinteger

Obtain text related
to error

This function enables the content to obtain a textual
description of the error represented by the error code
number.

LMSGetErrorString(errornumber)

CMIString256

Determine vendor-
specific
diagnostics

This function enables vendor-specific error descriptions to
be developed and accessed by the content. These would
normally provide additional helpful detail regarding the
error.

LMSGetDiagnostic(parameter)

CMIString256

Security functions

-TBD-

SCORM (1.0)

Page 132

AlICC

B.3.3

Description

Syntax

Parameter

Return value

Examples

B.34

Description

Syntax

Par ameter

Return value

B.3.5

Description

Rev 3.0
1-Sep-99

Appendix B: API-based CM| Communication CMI Guidelines

Initialize

Thisfunction indicatesto the API that the learning content is going to communicate
with the LMS. It allowsthe LMSto handle LMS specific initialization issues. Itis
called by content beforeit can call any other API function.

LM Sinitialize(parameter)

Null. A null must be passed for conformance to this standard. This parameter is
reserved for future extensions.

Boolean.
A "true" result indicates that the initialization was successful and a"false" result
indicatesthat it was not.

LMSiInitialize()
The learning content tellsthe API that the content wants to establish communication
withthe LMS. A typical return valueis"true".

Finish

The content must call this function before it terminates, if it successfully called
LMSInitialize at any point. It signalsto the LMS that the content has finished
communicating. The content may not call any API function except LM SGetL astError
after it callsLM SFinish. In other words, all LM SSetV alue commands must be made
before the LM SFinish call.

L M Sfinish(parameter)

Null. A null must be passed for conformance to this standard. This parameter is
reserved for future extensions.

None

Get a Value

Thisfunction allows content (the assignable unit) to obtain information from the LMS.
It isused to determine

- Valuesfor various categories (groups) and elementsin the CM| data model.

- Theversion of the data model supported.

- Whether a specific category or element is supported.

- The number of items currently in an array or list of elements.

133 CMI001

AlICC Appendix B: API-based CM| Communication CMI Guidelines

The complete data element name and/or keywords are provided as a parameter. The
current value of that parameter is returned. Only one value -- alwaysastring -- is
returned for each call.

Syntax LM SGetV a ue(parameter)

Parameters cmi.element.element
Returns the value of the named sub-element

cmi._version
The _version keyword is used to determine the version of the data model supported by
theLMS.

cmi.element._count
The _count keyword is used to determine the number of elements currently in an array.
This number is not changed by use of the LM SCommit call.

cmi.element._children
The _children keyword is used to determine all of the elementsin a group or category
that are supported by the LMS.

Return value All return values are strings which can be converted to the appropriate type.

For LM SGetV alue(cmi.group.element) the return value is a string representing the
current value of the requested element or group.

For LM SGetV alue(cmi._version) the return value is a string representing the version
of the data model supported by the LMS.

For LM SGetValue(cmi.group._children) the return value is a comma separated list of
all the element namesin the specified group or category that are supported by the
LMS. If an element has no children, but is supported, an empty string isreturned. If an
element is not supported, thereis no return. A subsequent request for last error
[LMSGetLastError()] can verify that the element is not supported.

For LM SGetVaue(cmi.group._count) the return value is an integer that indicates the
number of items currently in an element list or array.

Examples LM SGetVaue("'cmi.core.student_name")
A typical return value might be "Jackson Hyde".

LM SGetValue("cmi.core.lesson_status")
A typical return value might be "Incomplete”.

LM SGetValue(cmi._version)

The current draft standard for the |EEE document defining the CMI data model
is entitled Draft Sandard for Computer Managed Instruction, and has an 1D of
P1484.11.2 and aversion number of 2.2. This call returns the version number
of that |EEE document whichis 2.2.

Rev 3.0
1-Sep-99 134 CMI1001

AlICC Appendix B: API-based CM| Communication CMI Guidelines

LM SGetValue("cmi.student_preferences._children")

Thisisarequest for category support. One typical return value would be,
"audio,speed,text”. If thereisno return, preferences are probably not
supported. An additional API call to determinethe last error could verify this.

LM SGetValue("cmi.comments._children™)
The comments element has no children. A zero length string indicates that
comments are supported. No return implies no support for comments.

LM SGetValue(" cmi.evaluation.comments._children")

Thisisadataelement request. The empty string means that any list of student-
generated comments will be forwarded to the LMS. Further, this means the
LMSwill, when requested, produce a file matching the description in the
"Comments File" chapter of this document.

B.3.6 Set a Value

Description This function allows the learning content (the assignable unit) to send information to
the API. The APl may be designed to immediately forward the information to the
LMS, or it may be designed to forward information based on some other approach.
For instance, the API could accumulate the information and forward everything to the
LMSwhen the LM SFinish call is executed by the learning content.

Thisfunction is used to set the current values for various categories (groups) and
elementsin the CMI data model.

The data element name and its group are provided as a parameter. The current value
of that parameter isincluded in the call. Only one valueis sent with each call.

Syntax LM SSetV alue(parameter, value)

Par ameter Thisisthe name of afully qualified atomic element defined in the CMI Data Model.
The argument is case sensitive. The argument is astring surrounded by quotes.

The following represents some forms this parameter may take.

cmi.element
Thisisthe name of a category or group defined in the CMI Data Model. An exampleis
"cmi.comments”.

cmi.element.element
Thisisthe name of an element defined in the CMI Data Model. An example is
"cmi.core.student_name".

cmi.element.n.element
The value of the sub-element in the nth-1 member of the element array (zero-based
indexing is used).

Value Thisisastring which must be convertible to the data type defined in this standard for
the element identified in the first parameter.

Rev 3.0
1-Sep-99 135 CMI1001

AlICC

Return value

B.3.7

Description

Syntax

Parameter

Return value

B.3.8

Description

Syntax
Parameter

Return value

Rev 3.0
1-Sep-99

Appendix B: API-based CM| Communication CMI Guidelines

None

Send Cacheto CMI

If the ECMAScript is caching LM SSetValue values, this call requires that any values
not yet sent to the LM S be sent.

In some implementations, the ECM A Script may send the set valuesto the LMS as
soon as they are received, and not cache them locally. In such implementations, this
API isredundant and would result in no additional action from the ECMA Script.
LM SCommit(parameter)

Null. A null must be passed for conformance to this standard. This parameter is
reserved for future extensions.

None

Determine Error Code

The learning content must have away of assessing whether or not any given API call
was successful, and if it was not successful, what went wrong. This routine returns an
error code from the previous API call. Eachtimean API functioniscalled (with the
exception of this one, LM SGetErrorString, and LM SGetDiagnostic -- the error
functions), the error codeisreset in the API. The content may call the error functions
any number of timesto retrieve the error code, and the code will not change until the
next API call.

LM SGetL astError()
None.

Thereturn values are integer numbers that identify errorsfalling into the following
categories:
100 General errors
200 Syntax errors
300 LMSerors
400 Data model errors
The following codes are available for error messages:
0. No error
101. General exception
201. Invalid argument error
202. Element cannot have children
203. Element not an array — cannot have count
204. Element cannot have avalue
301. Not initialized
401. Not implemented error
Additional codes TBD

136 CMI1001

AlICC

B.3.9

Description

Syntax
Parameter

Return value

Rev 3.0
1-Sep-99

Appendix B: API-based CM| Communication CMI Guidelines

Obtain Text Related to Error

This function enables the content to obtain atextual description of the error
represented by the error code number.

L M SGetErrorString(errornumber)
An integer number representing an error code..

A string that represents the verbal description of an error.

137

CMI1001

AlICC Appendix B: API-based CM| Communication CMI Guidelines

B.3.10 Determine Vendor -specific Diagnostics

Description This function enables vendor-specific error descriptions to be devel oped and accessed
by the content. These would normally provide additional helpful detail regarding the
error.

Syntax L M SGetDiagnostic(parameter)

Parameter The parameter may take one of two forms.

An integer number representing an error code. This requests additional
information on the listed error code.

Null value. Thisrequests additional information on the last error that occurred.

Return value Thereturn value is astring that represents any vendor-desired additional information
relating to either the requested error or the last error.

B.3.11 Security Request/Respond -- TBD

Rev 3.0
1-Sep-99 138 CMI1001

AlICC

Appendix B: API-based CM| Communication

B.4 LMStoLesson Communications

CMI Guidelines

The following table represents a subset of the Data M odel defined in this document, which also contains more compl ete definitions for each term. The
missing data elements are those required for afile-based CMI, but not required for an API-based CMI.

The Mult column indicates whether the data element may be an array (Arr) or is always asingle value (SV). This obligation column represents the
obligations of the LMS, not the lesson or learning content. All data elements are optional for the lesson.

Table of LMS to Lesson Communications

Return Value

name Contextualized Definition Mult | LMS Typical API Calls
Obl

core Information required to be furnished by all SV Man LMSGetValue(“cmi.core._children”) CMIString256
CMI systems. What all lessons may
depend upon at start up.

|--student_id Unique alpha-numeric code/identifier that SV Man LMSGetValue(“cmi.core.student_id") CMlldentifier
refers to a single user of the CMI system.

|--student_name Normally, the official name used for the SV Man | LMSGetValue(“cmi.core.student_name”) CMIString256
student on the course roster. A complete
name, not just a first name.

|--lesson_location This corresponds to the lesson exit point SV Man LMSGetValue(“cmi.core.lesson_location”) CMIString256
passed to the CMI system the last time the
student experienced the lesson.

[--credit Indicates whether the student is being SV Man LMSGetValue(“cmi.core.credit”) CMIVocabulary
credited by the CMI system for his
performance (pass/fail and score) in this
lesson.

|--lesson_status This is the current student status as SV Man LMSGetValue(“cmi.core.lesson_status”) CMIVocabulary
determined by the CMI system, and sent to
the lesson when it is launched.

[--entry Indication of whether the student has been | SV Man LMSGetValue(“cmi.core.entry”) CMIVocabulary
in the lesson before.

Rev 3.0.1

24-Nov-99

139

CMI1001

AlICC

Appendix B: API-based CM| Communication

Table of LMSto Lesson (cont.)

CMI Guidelines

name Contextualized Definition Mult | LMS Typical API Calls Return Value
Obl

|--score Indication of the performance of the SV Man LMSGetValue(“cmi.core.score._children”) CMIString256
student during his last attempt on the
lesson.

[--]--raw Numerical representation of student SV Man LMSGetValue(“cmi.core.score.raw”) CMIDecimal
performance in lesson. May be CMiIBlank
unprocessed raw score.

[--]--max The maximum score or total number that SV Opt LMSGetValue(“cmi.core.score.max”) CMIDecimal
the student could have achieved. CMiIBlank

[--]--min The minimum score that the student could SV Opt LMSGetValue(“cmi.core.score.min”) CMIDecimal
have achieved. CMiIBlank

|--total_time Accumulated time of all the student SV Man LMSGetValue(“cmi.core.time”) CMITimespan
sessions in the lesson.

|--lesson_mode Identification of student-related information | SV Opt LSMGetValue(“cmi.core.lesson_mode”) CMIVocabulary
that may be used to change the behavior
of the lesson.

suspend_data Unique information generated by the)Y Man LMSGetValue(“cmi.suspend_data™) CMIString4096
lesson during previous uses, that is
needed for the current use.

launch_data Unique information generated at the SV Man LMSGetValue(“cmi.launch_data”) CMIString4096
lesson’s creation that is needed for every
use.

comments Instructor comments directed at the SV Opt LMSGetValue(“cmi.comments”) CMIString4096
student that the lesson may present to the
student when appropriate.

Rev 3.0.1

24-Nov-99 140 CMI001

AlICC

Appendix B: API-based CM| Communication

Table of LMSto Lesson (cont.)

CMI Guidelines

name Contextualized Definition Cont | LMS Typical API Calls Return Value
Obl Obl

evaluation Assignable units may be able to generate SV Opt LMSGetValue(“cmi.evaluation._children”) CMIString256
detailed student-performance/lesson-
evaluation information. This category
identifies if this functionality is supported
by the LMS.

|--course_id Alpha numeric sequence that provides a SV Opt LMSGetValue(“cmi.evaluation.course_id) CMlldentifier
unigue label for a course.

|--comments Identifies if the student’s comments on a SV Opt LMSGetValue(“cmi.evaluation.comments.) CMIiBoolean
lesson can be collected and made
available by the LMS in a separate file.

|--interactions Identifies what detailed information of a SV Opt LMSGetValue(“cmi.evaluation.interactions._c | CMIString256
student’s interactions in a lesson can be hildren”)
collected.

|--objectives_ Identifies what detailed information on)Y Opt LMSGetValue(“cmi.evaluation.objectives_sta | CMIString256

status lesson objectives can be collected. tus._children”)

|--path Identifies what detailed information can be | SV Opt LMSGetValue(“cmi.evaluation.path._children | CMIString256
collected on the path through the lesson ")
taken by the student.

|--performance Identifies what detailed information can be | SV Opt LMSGetValue(“cmi.evaluation.performance._ | CMIString256
collected, on the student’s performance in children”)
complex scenarios, such as simulations.

objectives Identifies how the student has performed Arr Opt LMSGetValue(“cmi.objectives._count”) CMlinteger
on individual objectives covered in the LMSGetValue(“cmi.objectives._children”) CMlinteger
lesson.

|--id A developer defined, lesson-specific SV Opt LMSGetValue(“cmi.objectives.n.id”) CMilldentifier
identifier for an objective.

Rev 3.0.1

24-Nov-99 141 CMI001

AlICC

Appendix B: API-based CM| Communication

Table of LMSto Lesson (cont.)

CMI Guidelines

name Contextualized Definition Cont | LMS Typical API Calls Return Value
Obl Obl

[--scores The score obtained by the student after Arr Opt LMSGetValue(“cmi.objectives.n.scores._cou | CMIString256
each attempt to master the objective. nt”) CMlinteger

[--]--raw Numerical representation of student SV Opt LMSGetValue(“cmi.objectives.n.scores.n.raw | CMIDecimal
performance after each attempt on the ") CMiIBlank
objective. May be unprocessed raw score.

[--]--max The maximum score or total number that SV Opt LMSGetValue(“cmi.objectives.n.scores.n.ma | CMIDecimal,
the student could have achieved. X’ CMiIBlank

[--]--min The minimum score that the student could SV Opt LMSGetValue(“cmi.objectives.n.scores.n.min | CMIDecimal
have achieved.) CMiIBlank

|--statuses The status obtained by the student after Arr Opt LMSGetValue(“cmi.objectives.n.status.n”) CMlIVocabulary
each attempt to master the objective.

student_data Information to support customization of a SV Opt LMSGetValue(“cmi.student_data._children”) CMIString256
lesson based on a student’s performance.

[--attempt_number | Number of times the student has been in, SV Opt LMSGetValue(“cmi.student_data.attempt_nu | CMlinteger
or previously used the lesson. mber”)

|--mastery_score The passing score, as determined outside | SV Opt LMSGetValue(“cmi.student_data.mastery_sc | CMIDecimal
the lesson. ore”)

[--max_time_ The amount of time the student is allowed)Y Opt LMSGetValue(“cmi.student_data.max_time_ | CMITimespan

allowed to have in the current attempt on the allowed”)

lesson.

[--time_limit_action | What the lesson is to do when the max SV Opt LMSGetValue(“cmi.student_data.time_limit_ | CMIVocabulary
time allowed is exceeded. action”)

|--attempt_records | Student’s performance after previous times | Arr Opt LMSGetValue(“cmi.student_data.attempt_rec | CMIString256
in the lesson. ords._children”) CMlinteger

LMSGetValue(“cmi.student_data.attempt_rec
ords._count”)

|--|--lesson_scores | The score obtained by the student after Arr Opt LMSGetValue(“cmi.student_data.attempt_rec | CMIDecimal
each previous attempt. ords.n.lesson_score”)

[--|-- Indication of the status of the lesson after Arr Opt LMSGetValue(“cmi.student_data.attempt_rec | CMIVocabulary

lesson_statuses

each attempt.

ords.n.lesson status”)

Rev 3.0.1
24-Nov-99

142

CMI1001

AlICC

Appendix B: API-based CM| Communication

Table of LMSto Lesson (cont.)

CMI Guidelines

name Contextualized Definition Cont | LMS Typical API Calls Return Value
Obl Obl
student_ Student attributes possessed before SV Opt LMSGetValue(“cmi.student_demographics._ | CMIString256
demographics entering the course. children”)
[--city Portion of student’s current address. SV Opt LMSGetValue(“cmi.student_demographics.ci | CMIString256
ty”)
|--class A predefined training group to which a SV Opt LMSGetValue(“cmi.student_demographics.cl | CMIString256
student belongs. ass”)
[--company Student’s place of employment. SV Opt LMSGetValue(“cmi.student_demographics.c | CMIString256
ompany”)
[--country Portion of student’s current address. SV Opt LMSGetValue(“cmi.student_demographics.c | CMIString256
ountry™)
|--experience Information on the student’s past that SV Opt LMSGetValue(“cmi.student_demographics.e | CMIString256
might be required by a lesson to determine xperience”)
what to present, or what presentation
strategies to use.
[--familiar_name An informal title that may be used to SV Opt LMSGetValue(“cmi.student_demographics.fa | CMIString256
address the student. miliar_name”)
[--instructor_name | Name of the person responsible for the)Y Opt LMSGetValue(“cmi.student_demographics.in | CMIString256
student’s understanding of the material in structor_name”)
the lesson.
[--title Title of the position or the degree currently | SV Opt LMSGetValue(“cmi.student_demographics.tit | CMIString256
held by the student. le”)
|--native_language | The language used in the student’s country | SV Opt LMSGetValue(“cmi.student_demographics.n | CMILocale
of origin. ative language”)
|--state Segment of a country, also called province, | SV Opt LMSGetValue(“cmi.student_demographics.st | CMIString256
district, canton, etc. ate”)
|--street_address Portion of student’s current address. SV Opt LMSGetValue(“cmi.student_demographics.st | CMIString256
reet_address”)
|--telephone Telephone number of a student. SV Opt LMSGetValue(“cmi.student_demographics.te | CMIString256
lephone”)
|--years_ Number of years the student has SV Opt LMSGetValue(“cmi.student_demographics.y | CMIString256
experience performed in current or similar position. ears_experience”)
Rev 3.0.1

24-Nov-99

143

CMI1001

AlICC

Appendix B: API-based CM| Communication

Table of LMSto Lesson (cont.)

CMI Guidelines

name Contextualized Definition Cont | LMS Typical API Calls Return Value
Obl Obl
student_ Student selected options that are SV Opt LMSGetValue(“cmi.student_preference._chil | CMIString256
preference appropriate for subsequent lessons. dren”)
[--audio Sound on/off and volume control. SV Opt LMSGetValue(“cmi.student_preference.audio | CMISInteger
11)
|--language Identifies in what language the information | SV Opt LMSGetValue(“cmi.student_preference.langu | CMILocale
should be delivered. age”)
|--lesson_type Indicates suitability of preferences to SV Opt LMSGetValue(“cmi.student_preference.lesso | CMIString256
current lesson. n_type”)
|--speed Pace of content delivery. SV Opt LMSGetValue(“cmi.student_preference.spee | CMISInteger
d)
|--text Written content visibility control. SV Opt LMSGetValue(“cmi.student preference.text”) | CMISInteger
|--text_color Written content foreground and SV Opt LMSGetValue(“cmi.student_preference.text_ | CMIString256
background hue. color”)
|--text_location Position of text window on the screen. SV Opt LMSGetValue(“cmi.student_preference.text_| | CMIString256
ocation”)
[--text_size Magnitude of the written content SV Opt LMSGetValue(“cmi.student_preference.text_ | CMIString256
characters on screen. size”)
[--video Motion picture tint and brightness on the SV Opt LMSGetValue(“cmi.student_preference.video | CMIString256
screen. ")
[--windows Size and location of video, help, glossary,)Y Opt LMSGetValue(“cmi.student_preference.n.win | CMIString256
etc. windows. dows")
Rev 3.0.1
24-Nov-99 144 CMI001

AlICC

Appendix B: API-based CM| Communication

B.5 LessontoLMS Communication

Table of Lesson to LMS Communication

CMI Guidelines

name Contextualized Definition Mult | LMS API Call Value Data
Obl Type
core Information required by the CMI system to | SV Man -
function.
|--lesson_location This identifies the point where the student SV Man LMSSetValue(“cmi.core.lesson_location”, CMIString256
leaves the lesson. value)
|--lesson_status This is the student status when he leaves SV Man LMSSetValue(“cmi.core.lesson_status”, CMIVocabulary
the lesson. value)
[--exit An indication of how or why the student left | SV Man LMSSetValue(“cmi.core.exit”, value) CMIVocabulary
the lesson.
|--score Indication of the performance of the SV Man
student during his time in the lesson.
[--]--raw Numerical representation of student SV Man LMSSetValue(“cmi.core.score.raw”, value) CMIDecimal
performance in lesson. May be
unprocessed raw score.
[--]--max The maximum score or total number that SV Opt LMSGetValue(“cmi.core.score.max”) CMIDecimal,
the student could have achieved. CMiIBlank
[--]--min The minimum score that the student could SV Opt LMSGetValue(“cmi.core.score.min”) CMIDecimal,
have achieved. CMiIBlank
|--session_time Time spent in the lesson during the SV Man | LMSSetValue(“cmi.core.time”, value) CMITimespan
session that is ending.
suspend_data Unique information generated by the SV Man LMSSetValue(“cmi.suspend_data”, value) CMIString4096
lesson, that is needed for future uses.
Passed to the CMI system to hold and to
return the next time the student starts this
lesson.
comments Student’s written remarks recorded during | array | Opt LMSSetValue(“cmi.comments.n “, value) CMIString4096
the current use of the lesson.
Rev 3.0.1

24-Nov-99

145

CMI1001

AlICC Appendix B: API-based CM| Communication CMI Guidelines
Table of Lesson to LMS Communication (cont.)
name Contextualized Definition Cont | LMS API Call Value Data
Obl Obl Type

objectives Identifies how the student has performed Arr Opt -
on individual objectives covered in the
lesson.

[--id A developer defined, lesson-specific SV Opt LMSSetValue(“cmi.objectives.n.id”, value) CMlldentifier
identifier for an objective.

[--scores The score obtained by the student after Arr Opt
each attempt to master the objective.

[--]--raw Numerical representation of student SV Opt LMSSetValue(“cmi.objectives.n.scores.n.raw | CMIDecimal
performance after each attempt on the ”. value)
objective. May be unprocessed raw score.

[--]--max The maximum score or total number that SV Opt LMSSetValue(“cmi.objectives.n.scores.n.ma | CMIDecimal
the student could have achieved. X", value)

[--]--min The minimum score that the student could SV Opt LMSSetValue(“cmi.objectives.n.scores.n.min | CMIDecimal
have achieved. " value)

|--statuses The status obtained by the student after Arr Opt LMSSetValue(“cmi.objectives.n.status.n”, CMIVocabulary
the each attempt to master the objective. value)

student_data Information on student performance for)Y Opt - -
each attempt on a selected segment of the
lesson without leaving the lesson.

|--tries_during_ Total number of efforts to complete the SV Opt LMSSetValue(“cmi.student_data.tries_during | CMlInteger

lesson lesson or selected segment. _lesson”, value)

|--tries Data related to each try. Arr Opt

|--|--score The score at the completion of each SV Opt
attempt.

[--]--]--raw Numerical representation of student SV Opt LMSSetValue(“cmi.student_data.tries.n.scor | CMIDecimal
performance after each attempt on the e.raw”. value)
objective. May be unprocessed raw score.

[--|--]--max The maximum score or total number that SV Opt LMSSetValue(“cmi.student_data.tries.n.scor | CMIDecimal
the student could have achieved. e.max’. value)

[--]--]--min The minimum score that the student could SV Opt LMSSetValue(“cmi.student_data.tries.n.scor | CMIDecimal
have achieved. e.min”. value)

Rev 3.0.1

24-Nov-99 146 CMI001

AlICC Appendix B: API-based CM| Communication CMI Guidelines
Table of Lesson to LMS Communication (cont.)
name Contextualized Definition Cont | LMS API Call Value Data
Obl Obl Type
|--|--status The status of the lesson or segment after SV Opt LMSSetValue(“cmi.student_data.tries.n.statu | CMIVocabulary
each attempt. s “, value)
[--|--time Length of time required for each attempt SV Opt LMSSetValue(“cmi.student_data.tries.n.time | CMITimespan
on a lesson or segment. “ value)
student_ Student selected options that are SV Opt -- -
preferences appropriate for subsequent lessons.
[--language Identifies in what language the information | SV Opt LMSSetValue(“cmi.student_preference.langu | CMILocale
should be delivered. age”, value)
|--lesson_type Indicates suitability of preferences to SV Opt LMSSetValue(“cmi.student_preference.lesso | CMIString256
current lesson. n_type”, value)
|--speed Pace of content delivery. SV Opt LMSSetValue(“cmi.student_preference.spee | CMISinteger
d”, value)
[--text Written content visibility control. SV Opt LMSSetValue(“cmi.student_preference.text”, | CMISInteger
value)
|--text_color Written content foreground and SV Opt LMSSetValue(“cmi.student_preference.text | CMIString256
background hue. color”, value)
|--text_location Position of text window on the screen. SV Opt LMSSetValue(“cmi.student_preference.text | | CMIString256
ocation”, value)
|--text_size Magnitude of the written content)Y Opt LMSSetValue(“cmi.student_preference.text_ | CMIString256
characters on screen. size”, value)
[--video Motion picture tint and brightness on the SV Opt LMSSetValue(“cmi.student_preference.video | CMIString256
screen. " value)
[--windows Size and location of video, help, glossary, Arr Opt LMSSetValue(“cmi.student_preference.n.win | CMIString256
etc. windows. dows", value)
Rev 3.0.1
24-Nov-99 147 CMI001

AlICC Appendix B: API-based CM| Communication CMI Guidelines
B.6 Student Data Collection
Student Data Collection Table
name Contextualized Definition Mult API Call Value Data
Type
lesson_id Alphanumeric label supplied by the developer. | SV LMSSetValue(“cmi.evaluation.lesson_id”, value) CMIString256
date The calendar day on which the data is SV LMSSetValue(“cmi.evaluation.date”, value) CMiIDate
created.
comments Freeform feedback from the student. More Arr -
structured representation than the comments
in the Lesson to LMS table.
[--time Indication of when the comment is made.)Y LMSSetValue(“cmi.evaluation.comments.n.time “, CMITime
value)
|--location Indication of where in the lesson the comment | SV LMSSetValue(“cmi.evaluation.comments.n.location “, | CMIString256
is made. value)
[--content The recorded statement of a student. SV LMSSetValue(“cmi.evaluation.comments.n.content “, | CMIString4096
value)
interactions A recognized and recordable input or group of | Arr -
inputs from the student to the computer
[--id Unique alphanumeric label created by the SV LMSSetValue(“cmi.interactions.n.id “, value) CMIString256
lesson developer.
[--objective_ids | Indication of any objectives associated with Arr LMSSetValue(“cmi.interactions.n.objective_ids.n“, CMIString256
the interaction. value)
|--time Indication of when the interaction is available SV LMSSetValue(“cmi.interactions.n.time “, value) CMITime
to the student.
|--type Indication of which category of interaction is SV LMSSetValue(“cmi.interactions.n.type “, value) CMIVocabulary
recorded.
|-- responses Expected student feedback in the interaction. Arr
|--|--description | Definition of possible student response. SV LMSSetValue(“cmi.interactions.n.response.n.descript | CMIFeedback
ion“, value)
[--]--value How the system judges the described SV LMSSetValue(“cmi.interactions.n.response.n.value®, CMIVocabulary
response. value)
Rev 3.0.1

24-Nov-99

148

CMI1001

AlICC

Appendix B: API-based CM| Communication

Student Data Collection Table

CMI Guidelines

name Contextualized Definition Obl API Call Value Data
Type

[--weighting Factor that is used to identify the relative SV LMSSetValue(“cmi.interactions.n.weighting “, value) | CMIDecimal
importance of one interaction compared to
another.

|--student_ Description of the computer-measurable SV LMSSetValue(“cmi.interactions.n.student_response | CMIFeedback

response action of a student in an interaction. “, value)

|--result Judgment of the of the student’s response. SV LMSSetValue(“cmi.interactions.n.result “, value) CMIVocabulary

|--latency The time from the presentation of the stimulus | SV LMSSetValue(“cmi.interactions.n.latency “, value) CMITimespan
to the completion of the measurable response.

objectives Information about a student’s performance on | Arr -
lesson objectives. The only additional data
that is not described in normal Lesson to LMS
communication is mastery time.

[--mastery_time | Chronological period spent in the objective. SV LMSSetValue(“cmi.objectives.n.mastery_time *, CMITimespan

value)

paths Description of the sequence of events the Arr -
student experienced in the lesson.

|--location_id Identification of where the student is in the)Y LMSSetValue(“cmi.path.n.location_id", value) CMIString256
lesson.

[--time Indication of when the student entered the SV LMSSetValue(“cmi.path.n.time”, value) CMITime
lesson segment.

|--status A record of the student’s performance in a SV LMSSetValue(“cmi.path.n.status”, value) CMIVocabulary
segment each time he leaves that element

[--why_left The reason a student departed an element in SV LMSSetValue(“cmi.path.n.why_left”, value) CMIVocabulary
the lesson.

[--time_in_ How long the student spent in the element. SV LMSSetValue(“cmi.path.n.time_in_element”, value) | CMITimespan

element
Rev 3.0.1

24-Nov-99

149

CMI1001

Al CC

B.7

Description

CMIBlank
CMIBoolean

CMIDate

CM I Feedback

CMIDecimal

CMIldentifier

CMILocale
CMIInteger
CMISldentifier

CMISInteger
CMIString256
CMI String4096

CMITime

CMITimespan

CMIVocabulary

Rev 3.0
1- Sep-99

Appendi x B: APl -based CM Communi cation CM Cui del i nes

Data Types

These definitionsarefor the datatypes used to describe the format of each dataelement. All of
the datatypes havethefirst three charactersof "CMI" to clearly indicate they are datatypesthat
may be uniqueto the CMI datamodel.

Anempty string.

A vocabulary of two words. trueor false

A period intime of one day, defined by year, month, and day in the following numerical format
YYYY/MM/DD.

Structured description of student responsein an interaction.

Number which may have adecimal point. If not preceded by aminussign, the number is
presumed to be positive. Examplesare"2" and"2.2".

Alphanumeric group of characterswith no white space or unprintable charactersinit.
Maximum of 255 characters.

A country and alanguage.

An integer number from 0 to 65536.

CMI System Identifier: Alphanumeric group of charactersthat beginswith asingleletter: A, B,
or Jand ends with an integer number. Oneto five numerals may follow the letter. SeeSystem
Identifier.

A signed integer number from —32768 to +32768.

A set of ASCII characters with a maximum length of 255 characters.

A set of ASCII characters with amaximum length of 4096 characters.

A chronological pointina24 hour clock. Identified in hours, minutes and secondsin the
format: HH:MM:SS.S Hours and seconds shall contain two digits. Seconds shall contain 2
digitswith an optional decimal point and additional digits.

A length of timein hours, minutes, and seconds shown in the following numerical format:
HHHH:MM:SS.S Hours and seconds shall contain two or more digits. Hours hasa maximum
of 4digits. Minutesshall consist of 2 digits. Secondsshall contain 2 digitswith an optional
decimal point and additional digits.

Used to attach specific vocabul arieswithin contextsin aschema. Vocabulary words must be

complete and exact matchesto those below. Single letters and abbreviations may not be used in
API communication. Thefollowing are vocabulariesincluded inthe CM| DataModel:

150 CM 001

AlICC

Rev 3.0.1
24-Nov-99

Appendix B: API-based CM| Communication

CMI Guidelines

Vocabulary Type

Members of Vocabulary

Mode normal review
browse

Status passed completed
failed incomplete
browsed not attempted

Exit time-out suspend
logout

Why-left student selected lesson directed
exit directed departure

Credit credit no credit

Entry ab-initio resume

Time Limit Action exit continue
message no message

Interaction true-false multiple choice
fill in the blank matching
simple performance likert
sequencing unique
numeric

Result correct wrong
unanticipated neutral

x.X (CMIDecimal)

151

CMI1001

AlICC

B.8

Description

Appendix B: API-based CM| Communication

CMI Guidelines

Data Comparison

The following tables compare the Group and Keyword names used in file-based

communication, with the data element names used in APl communications. The tables
indicate where there are differences and

Why anew element was created
Why akeyword was del eted
Why agroup or keyword name was changed.

Table of CMI to Lesson Communication

Data Model Name Group/Keyword Why Different
Title
core [Core]
|--student id Student ID
|--student name Student Name
Output_File Only needed for file-based

communication.

|--lesson location

Lesson Location

|--credit

Credit

|--lesson status

Lesson Status

|--entry status flag Need separate variable for every value
|--score Score

|--|--raw Need separate variable for every value
|--]--max Need separate variable for every value
|--]--min Need separate variable for every value
|--total time Time Avoid get and set time ambiqguity.

|--lesson_mode

Lesson Mode

suspend data

[Core Lesson]

Name better describes the data.

launch_data [Core_Vendor] Name better describes the data.
comments [Comments]

evaluation [Evaluation]

|--course id Course 1D

[--comments Comments_File API communication does not use files.
|--interactions Interactions File API communication does not use files.

|--objectives_status

Objectives_Status_
File

APl communication does not use files.

|--path Path File APIl communication does not use files.
|--performance Performance File API communication does not use files.
Rev 3.0.1

24-Nov-99

152

CMI1001

AlICC

Appendix B: API-based CM| Communication

Table of CMI to Lesson Communication (cont.)

CMI Guidelines

Data Model Name Group/Keyword Why Different

Title
objectives [Objectives_Status] | Status is only one element in this group.
[--id J ID.1 Objectives relationship established by

parent name. i.e. objectives.n.id

|--scores J Score.l Plural convention for possible array.
|--]--raw Need separate variable for every value
[--]--max Need separate variable for every value
[--]--min Need separate variable for every value
|--statuses J_Status.1 Objectives relationship established by

parent name. i.e. objectives.n.status

student data

[Student Datal

|--attempt _number

Attempt Number

|--mastery score

Mastery Score

|--max_time_
allowed

Max_Time_
Allowed

|--time limit action

Time Limit Action

|--attempt_records

Must have a name with no value to
enable children.

|--]--lesson_scores

Score.1l

for consistency with status.

Plural for array convention. Added lesson

lesson statuses

Lesson_Status.1

Plural convention for possible array.

student_ [Student
demographics Demographics]

|--city City

|--class Class

[--company Company

|--country Country

|--experience Experience

|--familiar name

Familiar Name

|--instructor _name

Instructor Name

|--title

Job Title

Generalize person's title.

|--native language

Native Language

|--state

State

|--street _address

Street Address

|--telephone Telephone
|--years_ Years_Experience
experience

Rev 3.0.1
24-Nov-99

153

CMI1001

AlICC

Appendix B: API-based CM| Communication

Table of CMI to Lesson Communication (cont.)

CMI Guidelines

Data Model Name Group/Keyword Why Different
Title

student_ [Student_ Singular because not an array.
preference Preferences]

|--audio Audio

|--language Language

|--lesson_type Lesson Type

|--speed Speed

|--text Text

|--text color Text Color

|--text location Text Location

|--text size Text Size

|--video Video

[--windows Window.1 Plural convention for arrays.

Table of Lesson to

CMI Communication

Data Model Name

Group/Keyword
Title

Why Different

core

[Core]

|--lesson_location

Lesson Location

|--lesson status

Lesson Status

|--exit status flag Need separate variable for every value
|--score Score
|--|--raw Need separate variable for every value
[--]--max Need separate variable for every value
|--]--min Need separate variable for every value
|--session time Time Avoid get and set time ambiguity.
suspend data [Core Lesson] Name better describes the data.
comments [Comments]
objectives [Objectives Status] | Status is only one element in this group.
[--id J ID.1 Objectives relationship established by
parent name. i.e. objectives.n.id
|--scores J _Score.l Plural convention for possible array.
|--|]--raw Need separate variable for every value
[--]--max Need separate variable for every value
|--]--min Need separate variable for every value
|--statuses J_Status.1 Objectives relationship established by
parent name. i.e. objectives.n.status

Rev 3.0.1
24-Nov-99

154

CMI1001

AlICC

Appendix B: API-based CM| Communication

Table of Lesson to CM| Communication (cont.)

Data Model Name Group/Keyword Why Different
Title
student data [Student Data]
|--tries_during_ Tries_During_
lesson Lesson

|--tries Need name for parent.

|--]--score Try_Score.1 Relationship to tries established by parent
name.

[--|--|--raw Need separate variable for every value

[--]--]--max Need separate variable for every value

[--]--]--min Need separate variable for every value

|--|--status Try Status.1 Relationship to tries established by parent
name.

[--|--time Try_Time.1l Relationship to tries established by parent
name.

student_ [Student_ Singular for non-array.

preference Preferences]

|--audio Audio

|--language Language

|--lesson type Lesson Type

|--speed Speed

[--text Text

|--text _color Text Color

|--text location Text Location

|--text size Text Size

|--video Video

[--windows Window.1

Rev 3.0.1
24-Nov-99

155

CMI Guidelines

CMI1001

Al CC Appendi x B: APl -based CM Communi cation CM Cui del i nes

Table of Lesson Evaluation Data

In aweb environment all Lesson Evaluation information must pass through the CMI system before it can be stored
in standard files. Each of the fieldsin the set of Lesson Evaluation files becomes just another data element that is
being passed to the CMI. The CMI isresponsible for assembling thisinformation plus any additional information
that isrequired from the Lesson to LM S table to create the files specified in this standard.

1- Sep-99

Data Model Name Field Title Why Different
Course_ID CMI already has this information. Do not
need to return it to the CMIL.
Student_ID CMI already has this information. Do not
need to return it to the CMI.
lesson id Lesson ID
date Date
comments Comments File
[--time Time
|--location Location
|--content Comment Content of comment. Keeping comment
would be redundant.
interactions Interactions File
Course ID Superflous (see above).
Student ID Superflous (see above).
Lesson ID Already in data model. (See above)
|--id Interaction_ID Full name superflous in data model.
(Appears as interactions.id)
|--objective ids Obijective ID Plural for array names.
Date Already in data model. (See above)
|--time Time
|--type Type _Interaction
|--responses Need name for parent.
|--]--description Correct_Response | More accurate term. Element can
represent incorrect answers as well as
correct.
|--|--value Response Value
|--weighting Weighting
[--student_ Student_Response
response
|--result Result
|--latency Latency
Rev 3.0

156

CM 001

Al CC

Rev 3.0

Appendi x B: APl -based CM Communi cation CM Cui del i nes
Table of Lesson Evaluation Data (cont.)
Data Model Name Field Title Why Different
objectives Objectives Status Same as objectives in lesson to LMS
File data.
Course ID Superflous (see above).
Student_ID Superflous (see above).
Lesson ID Already in data model. (See above)
Date Already in data model. (See above)
Time Pased with objectives information in
Lesson to LMS data.
Obijective ID In lesson to LMS data under objectives.
Score In lesson to LMS data under objectives.
Status In lesson to LMS data under objectives.
[--mastery_time Mastery_Time Must added to objectives in lesson to
LMS data.
paths Path File
Course ID Superflous (see above).
Student ID Superflous (see above).
Lesson ID Already in data model. (See above)
Date Already in data model. (See above)
|--location id Element Location Element location is an ID.
[--time Time
|--status Status
[--why left Why Left
|--time in element | Time in Element
157 CM 001

1- Sep-99

Appendix C — IEEE Learning Object Metadata Draft 3

This appendix incorporates the entire [IEEE LOM document and is available at
Itsc.ieee.org.

Rev 3.0
1- Sep-99 158 CM 001

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

| EEE L earning Technology Standards
Committee (LTSC)

L earning Object M etadata

Working Draft Document 3 (approved 1999-11-27)

Contents

1. Background Information
1.1 Creation of this Document
1.2 Disclaimers
1.3 Submitting comments and corrections
1.4 Revisions
1.5 Acknowledgements
2. Introduction

2.1 Scope

2.2 Purpose
3. Overview of the Metadata Structure

3.1 Basic Metadata Structure
3.2 Data Elements
3.3 List Vaues
3.4 Vocabularies
3.5 Multiplicity
3.6 Minmax Values
3.7 Character Sets
3.8 Derived Schemes
3.9 Indexation
3.10 Representation
4. Conformance
5. Base Scheme
6. LangStringType
7. DateType
8. Vocabulary Type
9. References to other standards
9.1 Complete Dublin Core mapping
9.2 Miscdllaneous

1 Background I nformation

1.1 Creation of this document

This document has been created at the request of the IEEE LTSC P1484.12 L earning Object Metadata (LOM)
Working Group. This draft document isto represent the best possible convergence of all the information collected to
date, input from the working group and existing work in this area.

Copyright © 1999 |EEE Working Group Draft (approved) 159

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

Thisversion 3.8 incorporates further work on version 3.7, posted on October, 24, 1999 to the LOM mailing list, as
documented in section 1.4 Revisions.

1.2 Disclaimers

Thisdocument is a proposal for the next Working Draft of the IEEE 1484.12 Working Group. Itisthelatestin a
series of versions that have been discussed at the meetings of the working group and on the mailing list, as
documented in section 1.4.

Copyright (C) 1999 IEEE. Do not use or claim conformance to this document.

1.3 Submitting comments and corrections
Please send all comments and corrections via Email to <wayne.hodgins@autodesk.com>.

1.4 Revisions

The previous release of the LOM specification was version 3.7, distributed through the LEARNING-OBJECTS
mailing list on October, 24 1999.

Based on discussions after the release of version 3.7, anumber of further modifications have been made to the
specification. These are listed below:

section 3.2:

0 added note "these typically refer to other standards (section 9) or vocabularies (section 3.4)" to
explanation of domain (based on comment from Dan Rehak);

o replaced "Inthat case, only the lowest level subelement shall have avalue." by "Elements with
subelements shall not have values directly; only elements with no subelements shall have values
directly. Elements with subelements shall have values indirectly only, through their subelements.”
(based on comment from Dan Rehak);

section 3.4:

0 repeated example with index value as representation for entry (based on comment from Dan
Rehak);

o replaced "If the entry isan item from the vocabulary, then the detail is optional. If present, the
detail provides additional specialization of the entry." by "If the entry is an item from the

vocabulary, then the detail can be null. If not null, then the detail provides additional specialization
of the entry.” (based on comment from Dan Rehak);

section 3.7:

o replaced "For instance, a derived scheme can define some elements as mandatory that are optional

or conditional in the Base Scheme." by "For instance, a derived scheme can restrict avocabulary
for an element to a subset of the vocabulary defined herein." (based on comment from Dan
Rehak);

section 5 and section 6:

o replaced "unordered list" by "multiple unordered instance" for elements with subelements
(suggestion from Dan Rehak);

0 replaced "ordered list" by "multiple ordered instance” for elements with subelements (suggestion
from Dan Rehak);

o for elementswith subelements, the terminology "single instance" was already in use;

Copyright © 1999 |EEE Working Group Draft (approved) 160

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

0 changed minmax value 4, 8, 16 or 32 for list itemsto 5, 10, 15 or 30 (suggestion from Dan
Rehak);

section 5:

o changed wording (but not intended meaning') of explanation throughout (suggestions from Phill
Dodds, Frank Farance, Wayne Hodgins, Dan Rehak and Tom Wason);

section 6:

o 1.1:LangString.Language: changed minmax from 120 to 100 (suggestion from Dan Rehak);

section 5, 6 and 7:

0 Removed notes column: absorbed it into explanation and domain, as appropriate (based on
suggestion from Scott Lewis).

section 8:

o 2:Detail: changed explanation to "Additional detail on the vocabulary entry." (based on comment
from Dan Rehak);

throughout:

o many editorial changes, including appropriate use of 'shall' and 'may' (based on comments from
Scott Lewis);

The LOM standard is being developed in |EEE 1484.12. Further information on past and current revisions may be
found at <http://Itsc.ieee.org/wgl2>.

1.5 Acknowledgements

The IEEE LTSC P1484.12 LOM working group wishes to thank Erik Duval, Tom Wason and Wayne Hodgins for
their tireless efforts and commitment to devel oping a high quality solution and document.

This document hasits originsin both the ARIADNE <http://ariadne.unil.ch> and IMS <http://www.imsproject.org>
Projects, without which this document could not have been created.

This document also builds on metadata work done by the Dublin Core group <http://purl.org/dc>.

2 Introduction

Metadatais information about an object, beit physical or digital. Asthe number of objects continuesto grow
exponentially and especially as our needs for learning expand equally dramatically, the lack of information or
metadata about objects has produced a critical and fundamental constraint on our ability to discover, manage and use
objects. To address this problem, the IEEE LTSC LOM working group has created a standard for "Learning Object
Metadata". Thisisthefirst documentation of thiswork and describes the structured metadata model, which has

been developed by the working group.

2.1 Scope

This standard specifies the syntax and semantics of learning objectmetadata, defined as the attributes required to
fully and adequately describe a learning object. A learning object is defined here as any entity, digital or non-digital,
that can be used, re-used or referenced during technology-supported learning. Examples of technol ogy-supported
learning applicationsinclude computer-based training systems, interactive learning environments, intelligent
computer-aided instruction systems, distance learning systems, web-based |earning systems and collaborative
learning environments.

Copyright © 1999 |EEE Working Group Draft (approved) 161

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

Examples of |earning objects include multimedia content, instructional content, instructional software and software

tools that are referenced during technology supported learning. In awider sense, |earning objects could include
learning objectives, persons, organizations, or events.

The LOM standards focuses on the minimal set of properties needed to allow learning objects to be managed,
located, and evaluated. The standard accommodates the ability for locally extending the minimal set of properties.

Relevant properties of learning objects include type of object, author, owner, terms of distribution, and format.
Where applicable, learning object metadata may include pedagogical properties, such as teaching or interaction
style, grade level, mastery level and prerequisites. Any given learning object can have more than one description
(i.e. LOM set or instance of the metadata scheme defined below).

The standard supports security, privacy, commerce, and evaluation, but only to the extent that metadatafields are

provided for specifying descriptive tokens related to these areas; the standard does not concern itself with how these
features are implemented. The LOM standard references existing open standards and existing work in related areas.
For example, the data scheme below takes into account the efforts to standardize the description of content objectsin
general, as developed in the Dublin Core Metadata I nitiative.

2.2 Purpose

1. Toenablelearners or instructors to search, evaluate, acquire, and use learning objects.
2. Toenable sharing and exchanging of learning objects across any technol ogy-supported learning system.
3. Toenable developing learning objectsin units that can be combined and decomposed in meaningful ways.

4. To enable computer agentsto automatically and dynamically compose personalized lessons for an
individual learner.

5. To complement the direct work on standards that are focused on enabling multiple Learning Objectsto
work together within an open, distributed, learning environment.

6. To enable documenting and recognizing the completion of existing or new learning and performance
objectives associated with Learning Objects.

7. Toenableastrong and growing economy for Learning Objects that supports and sustains all forms of
distribution; non profit, not-for-profit and for profit.

8. Toenable education, training and learning organizations, including government, public and private, to
express educational content and performance standardsin a standardized format that isindependent of the
content itself.

9. To provide researchers with standards that support collecting and sharing comparabl e data concerning the
applicability and effectiveness of Learning Objects.

10. Todefine astandard that is simple yet extensible to multiple domains and jurisdictions so asto be most
easily and broadly adopted and applied.

11. To support necessary security and authentication for the distribution and use of Learning Objects.

Copyright © 1999 |EEE Working Group Draft (approved) 162

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

3. Overview of the M etadata Structure

3.1 Basic metadata structure

The structured approach to metadata definition implies that the actual descriptors (that together form a conventional,
standardized description) of alearning resource - the learning object - are grouped into meaningful categories. The
Base Scheme shall consist of nine such categories:

1. General shall group all context-independent features plus the semantic descriptors for the resource.
2. Lifecycle shall group the features linked to the lifecycle of the resource.

3. Meta-metadata shall group the features of the description itself (rather than those of the resource being
described).

4. Technical shall group the technical features of the resource.

5. Educational shall group the educational and pedagogic features of the resource.

6. Rightsshall group the featuresthat deal with the conditions of use for the resource.

7. Relation shall group features of the resource that link it to other resources.

8. Annotation shall allow for comments on the educational use of the resource.

9. Classification shall group characteristics of the resource described by entriesin classifications.

Taken all together, these categories form what is called here the Base Scheme.

3.2 Data elements
Categories shall contain data elements. For each element, the base scheme shall define;

name: shall describe how the meta-data element is called,;
explanation: shall define the definition of the element;

multiplicity: shall define how many elements are allowed and whether their order is significant (see also
section 3.5);

domain: shall define constraints on appropriate values for the data element - these typically refer to other
standards (section 9) or vocabularies (section 3.4);

type: shall define whether the element's value is textual, a date or areserved element;
note: shall define additional explanations, guidelines for using the element, etc.;

example

Both the multiplicity and type information can include minmax values (see section 3.6).

Some data el ements contain subelements. Elements with subelements shall not have values directly; only elements
with no subelements shall have values directly. Elements with subelements shall have valuesindirectly only,
through their subelements. As an example, 1.3:General.CatalogEntry has avalue indirectly only, through
1.3.1:General.CatalogEntry.Catalogue and 1.3.2:General .Catal ogEntry.Entry .

3.3 List values
In some instances, a data element contains a list of values, rather than asingle value. Thislist shall be one of:

Copyright © 1999 |EEE Working Group Draft (approved) 163

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

ordered: shall specify that the order of the valuesin the list isimportant. For example, in alist of authors of
apublication, thefirst author is often considered the more important one.

unordered: shall specify that the order of the values bears no meaning. For example, if the description of a
simulation includes three short texts that describe the intended educational usein three different languages

(for instance French, German and Italian), then the order of these texts not significant and they may appear
in any order without loss of information.

A list of values shall contain at |east one element. Implementations may use alist of zero length for internal
operations, but an element with azero length list shall not be distinguishable from an element with no value. Where
avalueisrequired, azero-length list shall not bevalid as afinal value.

If an element with subelements contains alist of values, then each of these values shall be atuple of subelements.
For exampl e, the base scheme defines that the element 1.3:General.CatalogEntry contains an unordered list of values
for the subelements 1.3.1:General .Catal ogEntry.Catal ogue and 1.3.2:General .Catal ogEntry.Entry . In other words,

the Base Scheme defines that the value of the element 1.3:General.CatalogEntry is an unordered list of
(1.3.1:General .CatalogEntry.Catalogue,1.3.2:General . Catal ogEntry.Entry) elements.

3.4 Vocabularies

For some data elements, vocabularies are defined. A vocabulary shall be alist of appropriate values. Vocabularies
shall be one of:

restricted: shall specify that only the values from the list specified in this document are acceptable.

best practice: A list of suggested best-practice valuesis provided that should be used, but other values may
be used.

For data elements with associated vocabularies, the value shall be represented as atwo element tuple (entry, detail).
Theentry shall be an item from the vocabulary. For data elements with an associated best-practice vocabulary, the
entry may also be"User_defined", or "See _classification".

If theentry is an item from the vocabulary, then the detail may be be null. If not null, then the detail shall

provide additional specialization of the entry. In thisway, the detail shall further refine the vocabulary term
with an additional term provided by the user.

If the entry equals "User_defined", then the detail element shall belong to avocabulary not defined herein.
If the entry equals " See_classification", then the detail element shall belong to avocabulary identified by an

instance of the 9:Classification category, whose value for 9.1:Classification.Purpose shall equal the name
of the element with the best practice vocabulary.

Asanillustration, we give examples of the different cases for the element 5.2: Educational.L earningResourceType:

The simplest caseisjust an item from the vocabulary, for instance "Questionnaire". Thiswould be
represented as (" Questionnaire",null)

A somewhat more complex caseis an item from the vocabulary, with an additional detail element, asin

("Questionnaire","Multiple Choice Questionnaire").

If the user wants to include avalue that is not part of thelist of 5.2:Educational.L earningResourceType,

then the most simple caserelies on the "User_defined" value for the entry, asin ("User_defined",
"M otivatingExample™).

If the user wants to include a value from an existing classification, then he or she can do so through the

"See classsification" value for the entry, asin ("See_classification”,"xxx"). In this case, there must be a
valuefor 9:Classification, whose 9.1:Classification.Purposeequals "L earningResourceType". The value of
9.2.1:Classification.TaxonPath.Source will then define the classification that "xxx" comes from.

A vocabulary provided by this specification isalist of "enumerated values'. The (entry) value shall be represented
asanindex value, aslisted in the appropriate vocabulary. The (entry) value "User_defined" shall be represented as 1

Copyright © 1999 |EEE Working Group Draft (approved) 164

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

and "See_classification" shall be represented as 2. Numbers of 3 and higher refer to specific vocabulary items as
defined in the Base Scheme (Section 5). See also section 8. The (detail) value of the tuple shall be represented as a
LangString.

So, the exampl e above would be represented as:

("Questionnaire",null): (5,null)

("Questionnaire","Multiple Choice Questionnaire"): (5,"Multiple Choice Questionnaire™)
("User_defined", "MotivatingExample™): (1,"MotivatingExample")

("See_classification”,"xxx"): (2,"xxx")

3.5 Minmax values
In the base scheme, minmax values are defined for:

elementswith a list value: All applications shall support at least that number of entriesfor thelist. In other
words: an application may impose a maximum on the number of entriesit supports for the list value of that
element, but that maximum shall not be lower than the minmax value.

elements with type String or LangStringType: All applications shall support at least that length for the
String value (either directly or contained in the LangStringType) of that element. In other words: an

application may impose a maximum on the number of charactersit supports for the string value of that
element, but that maximum shall not be lower than the minmax value for the type of the element.

3.6 Character sets

This standard defines a conceptual structure for learning object metadata. It does not deal with representation issues,
which will be dealt with in separate documents. Whatever decisions are made in documents that deal with
representation, it isafirm expectation by the contributors of the LOM document that such decisions will be taken
with aview to support multiple languages. Thiswill have important repercussions with respect to the character sets
to be supported.

3.7 Derived schemes

The metadata structure defined in this document is called the Base Scheme. From the Base Scheme, other schemes
may be derived. Derived schemes shall inherit the structure from which they are derived. A derived scheme may add
additional categories and data elements, but only to describe characteristics not taken into account in the Base
Scheme. A common Base Scheme provides a high degree of interoperability and similarity among different derived
schemes.

It isimportant to note that the properties described by optional data elements shall be described through these
optional elements only and no overlapping data elements shall be introduced.

A particular derived scheme may be more restrictive. For instance, a derived scheme can restrict avocabulary for an
element to a subset of the vocabulary defined herein. But a derived scheme shall not be lessrestrictive.

3.8 Indexation

One should be aware of the fact that not all values for data elements need to be specified manually by each
individual indexer or searcher. In many cases, the values could come from automated processes or templates that
specify what is common for a number of objects. Thisimpliesthat a user describing objects, or someone searching
for appropriate material, would only be confronted with a subset of the elements in the Base Scheme.

Copyright © 1999 |EEE Working Group Draft (approved) 165

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

3.9 Representation

For each of the data elements, the specification includes the data type from which it derivesits values, such as
LangStringType or DateType, etc. These will be defined separately, and will be implemented in a particular way in a
particular system. In order to maximize interoperability, future work may define a common representation for these
datatypes. In the absence of such acommon representation, an exchange format, such as XML, would allow
systems with different representations to achieve interoperability through a conversion process.

4 Conformance

A metadatainstance shall conform to this standard if it satisfies the following four requirements:
1. The metadatainstance shall contain one or more LOM element(s).

2. All LOM elementsin the metadata instance shall describe characteristics as defined by the LOM
specification.
(For exampl e, the user shall not abuse the title element to describe the fonts used in the document.)

3. Valuesfor LOM elementsin the metadatainstance shall be structured as defined by the LOM specification
and this structural information shall be carried within the instance.
(This means that the grouping in categories and subelements must be maintained. But it does not mean that
representations cannot define mappings of this structure as they see fit. More specifically, an XML
representation can use the lang attribute to represent the Language element of a LangStringType value.)
or

Bindings must carry equivalent information about the metadata so that conversions between bindings do
not induce loss of information as defined within this standard.

4. If theinstance contains extensions to the LOM structure, then extension elements shall not replace elements
in the LOM structure.

Copyright © 1999 |EEE Working Group Draft (approved) 166

7 Novenber, 1999 Learni ng Obj ect Metadata

5 BaseScheme

Explanation Multiplicity

| A globally unique label that identifies this resource.
1.1 [lIdentifier [[Thisisand shall not be used, because there is no specified method for the single value

Icreation of aglobally unique indentifier.

| EEE LTSC P1484. 12/ WD3

Sl e S S S

|Reserved

[Name given to this resource.
This element may be an already existing one or it may be created by the indexer

LangStringType (1000

1.2 |Title lad hoc. single value i char)
This element shall correspond with the Dublin Core element DC.Title.
Copyright © 1999 | EEE Wor ki ng Group Draft (approved) 167

7 November, 1999

L earning Object Metadata

|IEEE LTSC P1484.12/WD3

Copyright © 1999 |IEEE Working Group Draft (approved) 168

This sub-category defines an entry within a
catalogue (i.e. alisting identification system)
assigned to this resource.
This sub-category isintended to describe this
resource according to some known
cataloging system so that it may be
externally searched for and located according .
to the methodol ogy of the specified system. |[multiple
unordered
13 |CatalogEntry This sub-category may be used asa instance (10 i i
functional replacement for the currently items)
reserved element 1.1:General.ldentifier, as
that is currently reserved. In thisway, it shall
be used to store the Dublin Core element
DC.ldentifier.
One of the catal og entries can be generated
automatically by the tool.
The name of the catalogue (i.e. listing . .

1.3.1 ICaIalogue ’identification system). singlevalue |[ISO 10646-1 String (1000 char) IISBN, ARIADNE
132 |Ent IActuaI string value of theentry withinthe ||\ || LangStringType |2—7342-0318,
- Y catalogue (i.e. listing identification system). > 9 |(1ooo char) LEAOS75

Languagel D = Langcode
(*-'Subcode)*, with
Langcode atwo-letter
) o language code as defined
The primary human language used within by [SO 639 and Subcode
this resource to communicate to the intended acountry code from [SO
user. 3166.
An indexation tool may provide a useful unordered list : "en", "en-GB", "de",
1.4 |Language lefailt Yy p (10 items) ggzra[:ter repertoire; 1SO [[String (100 char) |le & A" it
This element shall correspond with the]
|Dublin Core element DC.Language. The approach adopted is
compatible with that of
the xml:lang attribute and
is defined by REC1766.
I SO 639 deals with

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

‘ancient' languages, like
Greek and Latin.

The language code should
be given in lower case
and the country code (if
any) in upper case.
However, the values are
case insensitive.

A textual description of the content of this
[resource.

15 Description unordered list || |L angStringType i
' P This element shall correspond with the (10 items) (2000 char)
|Dub|in Core element DC.Description.
Keywords or phrases describing this
resource. . .
1.6 Keywords This element should not be used for ?{](()) :?:r;es list)| I(lago()sf;rr:gr)-r € 1
characteristics that can be described by other
elements.

culture, geography or region that appliesto

‘The span or extent of such things astime,
this resource. unordered list || |LangStri ngType Circa, 16th century
. (10 items) (1000 char) France

1.7 |Coverage
This element shall correspond with the
IDublin Core element DC.Coverage.
restricted vocabulary:
3=Callection
4=Mixed
5=Linear
; P ; 6=Hierarchical
18 Structure Underlying organizational structure of this singlevalue 7=Nefworked VocabularyType i
resource.
8=Branched
9=Parceled
10=Atomic
SO 646
1.9 Aggregation Level |[The functional granularity of thisresource. |jsingle value - 0.3 String (1 char) -

Copyright © 1999 |IEEE Working Group Draft (approved) 169

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

Level 0 shall be defined
asthe smallest level of
aggregation, e.g. raw
media data or fragments.

Level 1 shall be defined
asacollection of atoms,
e.g. an HTML document
with some embedded
pictures or alesson.

Level 2 shall be defined
asacollection of level 1
resources, e.g. a'web’ of
HTML documents, with
an index page that links
the pages together or a
unit.

Finaly, level 3 shall be
defined asthe largest
level of granularity, e.g. a
course.

Lan StringT e(50 3.0, 1.2. alpha,
\ersion The edition of thisresource. smgleval ue |- char) voorloplgeverse

restricted vocabulary:

3=Draft

4=Fina

2.2 Status The state or condition of this resource. single value 5=Revised V ocabularyType -
6=Unavailable
SO 646

Copyright © 1999 |IEEE Working Group Draft (approved) 170

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

2.3 |Contribute This sub-category describes those people or [multiple
organizations that have affected the state of ||unordered
this resource during its instance (30
evolution (includes creation, edits and items)
publication).

This sub-category is different from
3.3:MetaM etaData. Contribute.

|best practicelist:
3=Author
4=Publisher
5=Unknown
6=Initiator
7=Terminator
|8=Validator
2.3.1 |[Rae This element should include exactly one singlevalue ||9=Editor V ocabularyType -
linstance of Author. 10=Graphical Designer
11=Technical Implementer
12=Content Provider
13=Technical Validator
14=Educational Validator
15=Script Writer
16=Instructional Designer

IKind of contribution.

Theidentification of and information about
the people or organizations contributing to
this resource, most relevant first.

If 2.3.1:LifeCycle.Contribute.Role equals

uthor, then the entity should be a person
and this element shall correspond with the
Dublin Core element DC.Creator.

; ordered list .
2.32 ||Entity If 2.3.1:LifeCycle.Contribute.Role equals |(10 items) LD String (1000 chars)

Publisher, then the entity should be an
organisation and this element shall
correspond with the Dublin Core element
DC.Publisher.

If 2.3.1:LifeCycle.Contribute.Role is not
equal to Author or Publisher, then this
element shall correspond with the Dublin

Copyright © 1999 |IEEE Working Group Draft (approved) 171

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

|Care element DC.Contributor.

If the entity is an organisation, then it should
be auniversity department, company,
agency, institute, etc. under whose
responsibility the contribution was made.

2.3.3 |[Date The date of the contribution. single value DateType -

HEEINEE

globally unique label that identifiesthis
metadata record.
3.1 Identifier Thisisand shall not be used, asthereisno |isinglevalue |Reserved -
specified method for the creation of a
globally uniqueindentifier.

This sub-category defines an entry within a umnu(l)'%atl;ra od
3.2 Catalog Entry catalogue (i.e. listing identification system), || < 10 . i
given to the metadata instance. :?emag)ce (

Copyright © 1999 |IEEE Working Group Draft (approved) 172

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

This category isintended to describe this
metadata instance according to some
known catal oging system so that it may be
externally searched for and located according)|
to that system.

This element may be used as a functional
replacement for the currently reserved
element 3.1:MetaM etaData. | dentifier.

One of the catalog entries may be generated
automatically by the tool.

The name of the catalogue (i.e. listing
identification system).

3.2.1 Catalogue singlevalue |[ISO 10646-1 String (1000 char) [|Ariadne
| Generally system generated.
IActuaI string value of the entry in the
catalogue. .
. |L angStringType
2.2 ||Entry This element is usually generated by the singlevalue |- (1000 char) [KUL532
system.
This sub-category describes those people or
organizations that have affected the state of multiple

this metadata instance during its evolution ordered

3.3 |Contribute (includes creator and validator). instance (10 |[° - -
This element is different from items)
2.3:Lifecycle.Contribute.
Kind of contribution. :Ji[;?n vocabulary with best practice

331 Role Exactly one instance of creator should exist. singlevalue 3=Creator VocabularyType i

4=V alidator

The identification of and information about ordered list

3.3.2 ||Entity the people or organizations contributing to (10 items) vCard String (1000 char) ||
this metadatainstance, most relevant first.

3.3.3 |Date The date of the contribution. singlevalue |- |DateType -
The name and version of the authoritative unordered list

3.4 M etadata Scheme |{specification used to create this metadata (10 items) SO 646 String (30 char) LOM-1.0
linstance.

Copyright © 1999 |IEEE Working Group Draft (approved) 173

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

This element may be user selectable or
system generated.

If multiple values are provided, then the
metadata instance shall conform to multiple
metadata schemes.

L anguage of this metadatainstance. Thisis

Language the default language for all LangString singlevalue |isee LangStringType.L anquage String (100 char)
aluesin this metadata instance.

T

Technical datatype of thisresource.
This element shall be used to identify the ideo/ mpeg

software needed to access the resource. ?f(;):tde;e;)ed list IMIME type or ‘non-digital’ |I(_5%nog‘csrt]grr;gType application/ x-

This element shall correspond with the oolbook, text/ htmi
Dublin Core element DC.Format.

4.1 Format

The size of the digital resource in bytes.
Only the digits'0'.."9" should be used; the unit
isbytes, not MBytes, GB, etc.

4.2 Size This element shall refer to the actual size of singlevalue |[ISO 646, but only the digits'0'..'9" ||String (30 char)

this resource, and not to the size of a
compressed version of this resource.

string that is used to access this resource.
It may be alocation (e.g. Universal Resource
L ocator), or amethod that resolvesto a
location (e.g. Universal Resource Identifier).
ordered list

4.3 |L ocation Preferable Location first. (10 items) I1SO 10646-1 String (1000 char) [lhttp://host/id

Thisiswhere the learning resource described
by this metadatainstance is physically

located.
This sub-category describes the technical lTnu(;?oFI): od
4.4 Requirements capabilities required in order to use this instance (10 : .
resource. .
items)

Copyright © 1999 |IEEE Working Group Draft (approved) 174

7 November, 1999

L earning Object Metadata

|IEEE LTSC P1484.12/WD3

Imovies or animations.

If there are multiple requirements, then all
arerequired, i.e. thelogical connector is
AND.
open vocabulary with best
The technology required to use thisresource, || . practice:
B H —_ . y !D =
441 Type li.e. hardware, software, network, etc.. singlevalue 3=Operating System VocabularyType
4=Browser
if Type='Operating System', then
best practicelist:
3=PC-DOS
4=MS-Windows
5=MacOS
6=Unix
Name of the required technology to use this 7=Multi-OS
resource. 8=Cther
4.4.2 |[Name The value for this element may be derived ||singlevalue ||9=None VocabularyType |-
from 4.1:Technical.Format automatically, if Type="Browser' then best
e.g., "video/mpeg" implies"Multi-OS". practicelist:
10=Any
11=Netscape Communicator
12=Microsoft Internet Explorer
13=Opera
|if other type then open vocabulary
- . [ILowest possible version of the required . | .
4.4.3 |M|n| mum Version technology to use this resource. single value ‘ SO 646 String (30 char) -
. . __||Highest version of the technology knownto || . | .
4.4.4 ‘lM aximum Version support the use of this resource. singlevalue |[ISO 646 String (30 char) -
Installation LangStringType
4.5 Remarks “Descn ption on how to install thisresource. |(lsinglevalue |- (1000 char) -
16 Other Platform Information about other software and sndlevalue |- |L angStringType sound card ...,
' Requirements hardware requirements. 9 (1000 char) |runtime ...
Time a continuous resource takes when
played at intended speed. PT1H30M
a1 Duration This element is especially useful for sounds, singlevalue |- |RateType PT1M45S

Copyright © 1999 |EEE

Working Group Draft (approved) 175

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

I N N | N I—

The flow of interaction between this resource
and the intended user.
In an expositive resource, the information Expositive
lows mainly from this resource to the documents include
learner. Expositive documents are typically : -
- . essays, video clips,
used for learning- by- reading. |restricted vocabulary: all kinds of graphical
In an active resource, information also flows 3=Active material and
5.1 |Interactivity Type rom the learner to this resource. Active single value gzll\zﬂﬁgggtlve \ ocabularyType z;(;;c)ﬁrr;e;(rtns Adtive
docum_ents aretypically used for learning- 6=Undefined documents.incl ude
by- doing. simulations,
Activating linksto navigate in hypertext questl_onnal resand
documents is not considered as an [EXErciSes.
information flow. Thus, hypertext documents
are expositive.
open vocabulary with best
Specific kind of resource, most dominant practice:
kind first. 3=Exercise
. . . . 4=Simulation
|L earning Resource||This element shall correspond with the ordered list . .
] .
) | , . > — yTyp _
02 Type Dublin Core element 'Resource Type'. The ||(10 items) g_gyeﬂrg‘]“& re VocabularyType
ocabulary is adapted for the specific 7:Fi ?ﬁe
purpose of learning objects. 8; Ggaph
9=Index

Copyright © 1999 |IEEE Working Group Draft (approved) 176

7 November, 1999

L earning Object Metadata

|IEEE LTSC P1484.12/WD3

10=Slide

11=Table
12=Narrative Text
13=Exam
14=Experiment
15=ProblemStatement
16=SelfAssesment

This element shall define the degree of
interactivity between the end user and this

to take place.

7=University Second Cycle

8=University Postgrade
9=Technical School First Cycle
10=Technical School Second

: . " " {0,1,2,3,4}
| o resource, with O defined as"Very Low", 1 . .
5.3 |Interactivity Level defined as"Low" . 2 defined as"Medium”, 3 singlevalue 50 646 String (1 char) -
defined as"High", and 4 defined as"Very -
High".
This elements shall define a subjective
measure of this resource's usefulness as (0,1, 2 3, 4}
[5.4 Semantic Density compared to its size or duration, with 0 single value R String (1 char) -
' defined as"Very Low", 1 defined as"Low", 150 646
2 defined as"Medium", 3 defined as "High", -
and 4 defined as"Very High".
Principal user(s) for which this resource was
designed, most dominant first.
learner works with aresource in order to .
learn something. An author creates or |r3<is_t|_r|cter:j vocabulary:
|55 Intended end user ||publishes aresource. A learner workswith a |ordered list (4 4; Aﬁf] Ofr VocabularyType i
' role resource in order to learn something. A items) 5—Learner vocaulary Type
manager manages the delivery of this 6=M anacer
resource, e.g., auniversity or college. The —vianag
document for amanager istypically a
curriculum.
Open vocabulary with best
practice:
3=Primary Education
The principal environment within which the unordered list g:ﬁ?cﬁ;daéguigzg?on
|5.6 |Context learning and use of thisresource isintended (10 items) G;Un?versi ty First Cycle V ocabularyType -

Copyright © 1999 |IEEE Working Group Draft (approved) 177

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

|Cycle

11=Professional Formation
12=Continuous Formation
13=Vocational Training
14=0Other

Age of thetypical intended user.

This element shall refer to developmental
age, if that would be different from
chronological age.

The age of the learner isimportant for
finding resources, especially for school age
learners and their teachers.

hen applicable, the string should be unordered list | Im;mup,e ;%ag]g’fi?’cﬁﬁaren
formatted as mi nlagemaxage or minage-. (5 items) (1000 chars) |over 7, adults only
(Thisisacompromise between adding three
subfields (minAge, maxAge and description)
and having just afree text field.)

Typical Age

-7 |Range

arious reading age schemes, 1Q's
or developmental age measures should be
represented through the 9:Classification
category

This element defines how hard it isto work
through this resource for the typical target
audience, with 0 defined as"Very Easy", 1
defined as "Easy", 2 defined as"Medium", 3
defined as "Difficult", and 4 defined as
"Very Difficult".

Typica Learning pproximate or typical time it takes to work
Time ith this resource.

- {0,1,23,4
single value String (1 char) -

|5.8 Difficulty
SO 646

PT1H30M

DateType PTIM45S

_— Comments on how thisresourceisto be . LangStringType Teacher guu_jelln&e
|5.10 Description used single value (1000 char) hat come with a

extbook.

I5.9

single value

) i - LanguagelD =
The human language used by the typical unordered list Langcode('-'Subcode)*, "en", "en-GB", "de"

intended user of this resource. (10 items) with Langcode a two- String (100 char) "fr-CA", "it"

letter language code as

15.11 Language

Copyright © 1999 |IEEE Working Group Draft (approved) 178

7 November, 1999

L earning Object Metadata

|IEEE LTSC P1484.12/WD3

defined by 1SO639 and
Subcode a country code
from | SO 3166.

SO 646

Thisapproachis
compatible with that of
the xml:lang attribute and
is defined by RFC 1766.

SO 639 deals with
‘ancient' languages, like
Greek and Latin.

The language code should
begivenin lower case
and the country code (if
any) in upper case.
However, the values are
case insensitive.

Copyright © 1999 |IEEE Working Group Draft (approved)

7 November, 1999

L earning Object Metadata

|IEEE LTSC P1484.12/WD3

. . restricted vocabulary:
|6.1 Cost IWhether use of this resource requires singlevalue ||3=yes VocabularyType
payment. B
4=no
l6.2 Copyright and hether copyright or other restrictions apply |{single |r3€5tr|cted vocabulary: VocabularvTvpe
Other Restrictions ([to the use of thisresource. linstance 4%?
l6.3 |Descri tion Comments on the conditions of use of this sndlevalue |- LangStringType
: P 9 |(1ooo char)

resource.

=

Nature of the relationship between this
resource and the target resource, identified
by 7.2:Relation.Resource.

This element shall correspond with the
IDublin Core element DC.Relation.

single value

best practice list from Dublin

\ ocabularyType

Copyright © 1999 |IEEE Working Group Draft (approved)

180

7 November, 1999 L earning Object Metadata

|IEEE LTSC P1484.12/WD3

10=IsReferencedBy
11=IsBasedOn
12=IsBasisFor
13=Requires
14=IsRequiredBy
The target resource that thisrelationship single
7.2 IR&eource Ireferences. linstance i i i
» (U nique Identifier of the target resource. _
7.21 |Identifier Thisisand shall not be used. singlevalue |- |Reserved -

Descrl pt| on Descri pt| on of the target resource. Si ngI evalue

Lan StringType

1000 char

|Person |The person who created this annotation. "Sl ngI evalue vCard String (1000 char)
||8 2 |Date |Date that this annotation was created. [lsi ngl evaue |- [DateType ||
Lan Strl naType

Descrl pt| on The content of thi s annotation. Si ngI e vaI ue

open vocabulary with best
practice:
9.1 Purpose The purpose of classifying this resource. singlevalue ||3=Discipline \ ocabularyType -
4=|dea
5=Prerequisite

1000 char

Copyright © 1999 |IEEE Working Group Draft (approved) 181

7 November, 1999

L earning Object Metadata

|IEEE LTSC P1484.12/WD3

|6=Educational Objective
7=Accessibility Restrictions
|8=Educational Level
9=Skill Level

10=Security Level

9.2

TaxonPath

This sub-category describes ataxonomic
path in a specific classification system. Each
succeeding level isarefinement in the
definition of the higher level.

There may be different paths, in the same or
|different classifications, that describe the
same characteristic.

A taxonomy is ahierarchy of termsor
Iphrases that are taxons.

multiple
unordered
instance (15
items)

9.2.1

Source

The name of the classification system.

This element may use any recognized

"official" taxonomy, any user-defined
taxonomy. An indexation or query tool may
provide the top-level entries of awell-
established classification (LOC, UDC, DDC,
etc.).

single value

I1SO 10646-1

String (1000 char)

ACM, MESH,
ARIADNE

9.2.2

Taxon

This sub-category describes a particular term

ithin a hierarchical classification system or
taxonomy. A taxon isanodethat hasa
defined label or term. A taxon may also
have an alphanumeric designation or
identifier for standardized reference. Either
or both the label and the entry may be used
to designate a particular taxon.

An ordered list of Taxons creates a
taxonomic path, i.e. "taxonomic stairway":
thisis apath from a more general to more
specific entry in aclassification.

A TaxonPath shall have adepth from 1to 9.
Normal values should be defined as values
between 2 and 4.

multiple
ordered
instance(15
items)

Physics/ Acoustics/
I nstruments/
Stethoscope
Medicine/
Diagnostics/

I nstruments/
Stethoscope

Copyright © 1999 |IEEE Working Group Draft (approved) 182

7 November, 1999 L earning Object Metadata IEEE LTSC P1484.12/WD3

320
Theidentifier of the taxon, such asanumber .
9.2.2.1 |Id |or letter combination provided by the source [lsinglevalue ||ISO 10646-1 .igrr;gwpe (o0 32
of the taxonomy. BE180
9.2.2.2 |([Entry Thetextual label of the taxon. singlevalue || I(‘Saono 3223 ype ‘lM edical Sciences
Thisisthe description of the resource medical
[felative to the stated LangStringType instrument for
9.3 Description 9.1.Classification.Purpose of this specific singlevalue |- (2000 char) listenina called a
classification, such as discipline, idea, skill steth&cgo o
level, educational objective, etc.. pe.
These are the keywords and phrases
descriptive of the resource relative to the ordered list
9.4 Keywords stated 9.1:Classification.Purpose of this 10 items - -
specific classification, such as accessibility, [(10 1€Ms)
security level, etc., most relevant first.

Copyright © 1999 |IEEE Working Group Draft (approved) 183

7 November, 1999

Learning Object Metadata

|IEEE LTSC P1484.12/WD3

6. LangStringType
Multipliity | Doman | Type | Example |
1 |[lLangString ||String in one or more human languages. - -
Languagel D = Langcode(’-'Subcode)*,
with Langcode a two-letter language code
as defined by SO 639 and Subcode a
country code from | SO 3166.
SO 646
This approach is compatible with that of
the xml:lang attribute and is defined by
. . L RFC 1766. ; o "
Human language in which the string is expressed. _ String en", "en-GB",
1.1 |Language Indexation tool should provide useful default. singlevalue | SO 639 deals with 'ancient' languages, like (100 de , "fr-CA”,
: char) it
Greek and Latin.
The language code should be givenin
lower case and the country code (if any) in
upper case. However, the values are case
insensitive.
If no Language is specified, then
LangString.String should be interpreted as
astring in 3.5:MetaM etaData.L anguage.
Actual string value.
A string shall contain at |east one letter.
Implementations may use a string of zero length
; for internal operations, but an element with azero || . :]
1.2 ||String length string shall not be distinguishable from an singlevalue 150 10646-1 String
element with no value. Where avalueisrequired,
a zero length
string shall not be valid asafinal value.
Copyright © 1999 |IEEE Working Group Draft (approved) 184

7 November, 1999 Learning Object Metadata IEEE LTSC P1484.12/WD3

7. DateType

Date expressed as per SO 8601 standard.
1 ||DateTime All occurrences of thistype shall correspond with the Dublin ||singlevalue ||ISO 8601 |{String (200 char) 1999-06-11

|Core element DC.Date.
LangStringType (1000
|char)
8. VocabularyType

[nr | Name Explanation ||I__|l

circa 1300 BC, Fall
Semester 1999

‘|Description |Description of the date. single value

String (2 char)
. A - 1=User_defined
"User_defined”, "See_classification", or an entry fromthe || . — =

1 ||Entry vocabulary of the data element. singlevalue [|ISO 646 2=See classification -
other values as defined in the base scheme for
the data element

~||Additional detail on the vocabulary entry. _ _
2 ||Detail See section 3.4. singlevalue |- |LangStr|ngType (1000 char) -

Copyright © 1999 |IEEE Working Group Draft (approved) 185

7 November, 1999

Learning Object Metadata |IEEE LTSC P1484.12/WD3

9 Referencesto Other Standards

9.1 Complete Dublin Core Mapping
The Dublin Core defines 15 fields of meta data information. These (unqualified) fields map directly to data elements in the above structure.

1.3:General .CatalogEntry. 1.1:General .Identifier is currently areserved term, as there is no specified method for the creation of aglobally

‘|DC.Identifier |unique indentifier.

IDC.Title |1.2:General.Title

IDC.Language [1.4: General L anguage

||DC.D$chti on ||1.5:Genera| .Descri Etion

|IDC.Subject ||1.6:Genera| .K&words or 9:Classification with 9.1:Classification.Purposeequal s "Discipline" or "ldea
|DC.Coverage [1.7:General.Coverage

||DC.Type } ||5.2: Educational.L earningResourceType

|DC.Date ||Mtribute&atewhenz.3.l: LifeCycle.Contribute.Role has avalue of "Publisher".
|IDC.Creator | 2.3.2:LifeCycle.Contribute.Entity when 2.3.1:LifeCycle.Contribute.Role has avalue of "Author".
IDC.OtherContributor | 2.3.2:LifeCycle.Contribute.Entity with the type of contribution specified in2.3.1: Llfﬁcle Contribute.Role
|IDC.Publisher [2.3.2:LifeCycle.Contribute.Entity when 2.3.1:LifeCycle.Contribute.Role hasavalue of "Publisher”.
|IDC.Format [4.1: Technical. Format

Ibc Rights l6:Rights

| DC.Relation ||7: Relation

IDC.Source [7.2:Relation.Resource when the value of 7.1:Relation.Kind is"IsBasedOn'".

Copyright © 1999 |IEEE Working Group Draft (approved) 186

9.2 Miscellaneous

Dublin Core: The Dublin Core is a metadata element set intended to facilitate discovery of
electronic resources. <http://purl.org/dc/>

SO 639: Thisisan international standard for the representation of languages. Version 1 uses two-
letter language codes, e.g. 'en’ for English, 'fr' for French, 'nl’ for Dutch, etc. These language codes
are abasisfor the IETF registry of language tags, as specified in RFC 1766: Tags for the
identification of languages.

SO 646: Thisisan international standard that defines the ASCII character set.

SO 3166: Thisisan international standard for the representation of country names, e.g. 'BE' for

Belgium, 'CA’ for Canada, 'FR' for France, 'GB' for United Kingdom, 'US for United States, etc.
<http://www.din.de/gremien/nas/nabd/iso3166ma/codlstpl.html >

SO 8601: Thisisan international Standard that specifies numeric representations of date and

time. The basic notationisYYYY-MM-DD where YYYY istheyear in the usual Gregorian
calendar, MM is the month of the year between 01 (January) and 12 (December), and DD isthe
day of the month between 01 and 31. <http://www.cl.cam.ac.uk/~mgk25/iso-time.html >

SO 10646-1: Thisisan international Standard that specifies a character set that relies on 32 bits,

includes approximately 4 billion characters, of which the first 65536 are Unicode, the first 256 are
SO 8859-1, and the first 128 are ASCII.

MIME type: Multipurpose Internet Mail Extensions extends the format of Internet mail to allow
non-US-ASCII textual messages, non-textual messages, multipart message bodies, and non-US-

ASCII information in message headers.
<http://www.oac.uci.edu/indiv/ehood/ MIME/MIME.html>

RFC 1766: This Internet standard defines alanguage tag, referring to SO 639 for the language,
and to]SO 3166for the country code. <http://ds.internic.net/rfc/rfc1766.txt >

vCard: <http://www.imc.org/pdi/>: This standard defines how contact details for people and

organisations can be representedAppendix D — IMS Learning Resource Metadata XML Binding
Specification

The following specification is available from www.imsproject.org.

Copyright © 1999 |IEEE Working Group Draft (approved) 187

Appendix D
IMS Learning Resource Meta-data
XML Binding Specification

Version 1.0
Copyright © 1999 by EDUCAUSE

About Thi s Document

Table of Contents

I ntroduction

XML Basics

Elements
Element Contents
Element Attributes
Element Names
Document Type Definitions (DTD)
Declaring Element Contents
Declaring Element Attributes
Use of Attributes
Lists
Ordered Lists
Unordered Lists

Namespaces
Special Handling Requirementsfor M eta-data Elements

LangStringType

DateType
Language elements
TaxonPath elements

vCard elements
Keywords

Extensibility
Using the vCard Specification

Sample M eta-data Record

Appendix
Additional resources

Copyright © 1999 |IEEE Working Group Draft (approved) 188

Introduction

This document describes the XML binding for the IMS Learning Resource Meta-data
Information Model. The model is based on the IEEE Learning Technology Standards
Committee (LTSC) Learning Object Meta-data base document, plus modifications
approved by the IMS Technical Board and submitted to |EEE. For links to the related
|EEE documents, please see http://www.imsproject.org/metadata/mdinfo01.html

XML Basics

The IEEE conceptual model for metadata definitions is a hierarchy. Hierarchical models
are convenient for representing data consisting of many elements and subelements. XML
is perfectly suited for representing hierarchical models such as the IEEE LOM Base
Document. An XML document is a hierarchy comprised of elements that have contents
and attributes.

Elements

An element is a component of a document that has been identified in away a computer
can understand. Each element has a tag name. When atag name is shown as
"<TAGNAME>", with less-than and greater-than symbols before and after the tag name,
it serves as the start-tag to mark the beginning of an element. When that same tag name
has aforward slash "/" added, it serves as an end-tag such as "</ TAGNAME>". An
element may have contents between its start and end-tags, and may have one or more
attributes. When an XML element has a start and end-tag (also called an opening and
closing tag) with a common name, it is considered to be "well-formed" XML. The
contents of an element are placed between the start and end-tags as shown below:

<TAGNAME>cont ent s</ TAGNAME>

Element Contents

An element may contain other elements, Parsed Character Data (PCDATA), Character
Data (CDATA), or amixture of PCDATA and elements. The allowable contents of an
element are its content model. PCDATA really means any character string that does not
contain elements. PCDATA iswhat the bulk of elements will use between their start and
end-tags. CDATA isdifferent in that it is a method for adding any character data that
should not be processed. For example you could add some JavaScript code instructions
using a CDATA section. A CDATA section tells the parser not to look for any markup
until after it locates the end of the CDATA section.

Element Attributes

An attribute provides additional information about an element. Attributes are away of
attaching characteristics or properties to the elements of a document. An element may
have more than one attribute and are contained within the start tag of an element.
Attributes are represented by an attribute name followed by an equal sign and the
attribute value in quotation marks:

<TlI TLE> <LANGSTRI NG | ang="en-US">Sni ffy the Virtual
Rat </ LANGSTRI NG </ Tl TLE>

Copyright © 1999 |IEEE Working Group Draft (approved) 189

In this example, the TITLE element contains another element, the LANGSTRING
element. The LANGSTRING element has one attribute "lang", with the value "en-US'
and the contents of the element being the string "Sniffy the Virtual Rat".

Element Names

Each element has a unique name, the tag name. XML is case-sensitive in its processing of
tag names. The IMS Learning Resource Meta-data XML binding specification adheres to
the following tag name rules:

All tag names will conform to the rules for e ement naming as given within the
XML Version 1.0 specification

Names beginning in "xml" in any case or mix of cases are not permitted.

The IMS binding will use only upper case tag names. All eement names in the
IMS XML binding are to be in capitals. This will alow uniform machine
conversion to a single case should the need arise.

Element names may not include words reserved by the XML specification. These
include:

DOCTYPE
ELEMENT
ATTLIST
ENTITY

Tag names defined by the IMS binding may not be redefined.

Document Type Definitions (DTD)

The tag name, content model, and attributes of elements are defined in a Document
Type Definition (DTD) statement. This may exist as an external file or ablock of text
internal to an XML document. Internal DTDs are used to override elements defined in
external DTD files, so an internal DTD should be used with care. The DTD defines the
elements that may be used, and may define the contents of the elements.

This specification defines external DTDs with defined file names, specifically IMS-
MDO01.dtd and IM SCORO01.dtd. These file names represent the 1.0 version of the IMS
Meta-data and the version 1.0 of the IMS CORE metadata respectively. Some XML
editors may make use of a DTD to help guide the developer in creating the proper
elements at the proper locations in an XML file. Other developers will make use of DTDs
to validate their XML documents to ensure their document is consistent with al of the
element names and locations defined in the DTD. An XML document isvalid if it has an
associated document type declaration and if the document complies with the constraints
expressed in it. Details of the construction of DTDs are outside the scope of this
document, but links to the XML Version 1.0 specification and the IMS-MDOL1.dtd are
included in the Appendices section of this document.

Copyright © 1999 |IEEE Working Group Draft (approved) 190

Declaring Element Contents

The information specifying the order and usage of allowable contents for an element are
its content model. The content model is declared in a Document Type Definition or DTD
(see below). The declaration of the content model is of the general form:

<! ELEMENT TAGNAME (Content Mbdel)>

The DATETIME element can again serve as an example of how an element is declared
with its content model:

<! ELEMENT DATETI ME (#PCDATA| EXTENSI ON) * >

The vertical bar character "[* indicates that the metadata author may choose between the
elements. The asterisk "*" after the content model means that the #PCDATA element and
the EXTENSION element may be mixed or optionally interspersed with subelements.
This definition of the DATETIME element’s content model allows the following XML
fragment to exist:

<DATETI ME>1999- 07- 23
<EXTENSI ON> <LANGSTRI NG | ang="en" >ci r ca</ LANGSTRI NG
</ EXTENSI ON\>
</ DATETI Me>

Notice that the EXTENSION element is optional and was used in the example above.
The XML specification provides more information about the details for creating and
interpreting content models.

Declaring Element Attributes
An example of how the attributes for the element LANGSTRING are declared inaDTD
is found below:

<! ELEMENT LANGSTRI NG (#PCDATA| EXTENSI ON) * >
<I'ATTLI ST LANGSTRI NG
| ang CDATA #l| MPLI ED>

The first line declares that there is an element named "LANGSTRING" which is allowed
to have PCDATA and EXTENSION elements as its contents. The second line begins
with "TATTLIST" to start an attribute list declaration for the LANGSTRING element.
The word "lang" will serve as the attribute’s name. The allowable value for this attribute
must be of type CDATA.

At the end of the example above is the term #iIMPLIED. It is at this location in the
attribute declaration, where a default value for an attribute may be specified. It isalso
possible to use the keyword #REQUIRED which would force a lang value to be supplied
and there would be no default value. In the example above, the ##MPLIED designation
means that the DTD designer wants to alow users to omit the value for the attribute
without forcing a particular default value.

Copyright © 1999 |IEEE Working Group Draft (approved) 191

Use of Attributes

Within the IMS XML binding, the use of attributes is reserved for information about the
structure of, and source of terms in, the metadata record. It is recommended that
attributes not be used for information about the resource. This IMS XML binding
specification uses only two element attributes (the "lang" attribute and the "type"
attribute) in particular ways and for particular purposes.

lang:

This attribute specifies the human language of the contents of the element. It is only used
as an attribute of the LANGSTRING element. The lang attribute may contain a two-
character language code followed by a two-character country code. For example:

<OTHERPLATFORVREQUI REMENTS>
<LANGSTRI NG | ang="en-US">WI| not run in
br owser . </ LANGSTRI NG
</ OTHERPLATFORVREQUI REMENTS>

The codes for languages and countries are enumerated in the XML specification

type:

This attribute specifies the type of string that may be used to identify the location of a
learning resource as used in the Location element. The type attribute may be assigned the
value of either "URI" or "TEXT". These vaues indicate whether the string used will be a
simple textual description of where aresource is located or whether the string represents
aresource available on the Internet with a specific address such as a URL. For example:

<TECHNI CAL>
<FORNAT/ >
<SI ZE>1032353</ S| ZE>
<LOCATI ON
type="URlI">http://ww. br ookscol e. comx/ LOCATI ON>
</ TECHNI CAL>

The codes for languages and countries are enumerated in the XML specification

Lists

The metadata specification uses listing at multiple levelsin the hierarchy. A listisa
repetition of the contents of an element. In XML this is accomplished by repeating the
containing element:

<?xm version="1.0" encodi ng="UTF-8"7?>
<! DOCTYPE RECORD |
<! ELEMENT RECORD (GREETI NG*) >
<! ELEMENT GREETI NG (#PCDATA) >
1>
<RECORD>
<GREETI NG>Hel | o, wor | d! </ GREETI NG>
<GREETI NG>How ar e you?</ GREETI NG
</ RECORD>

In this example, the element "GREETING" is repeated. Thus GREETING is the

Copyright © 1999 |IEEE Working Group Draft (approved) 192

containing element for the repeated contents of "Hello, world!" and "How are you?"
The notation for repetitions of an element in a content model follows the XML
specification An asterisk (*) specifies that none or more repetitions of the element may
be included in the XML instantiation. There are two main types of lists: ordered and
unordered.

Ordered Lists

Repeating the listed element at its specific location in the XML structure creates an
ordered list of contents. The order of the elements has significance as their placement in
the XML file determines this. The following is an example of an XML fragment in which
the EDUCATIONAL element contains an ordered list of LEARNINGRESOURCETY PE
(learning resource type) elements:

<EDUCATI ONAL>
<LEARNI NGRESOQURCETYPE>
<LANGSTRI NG | ang="en" >Si nul at i on</ LANGSTRI NG
</ LEARNI NGRESOURCETYPE>
<LEARNI NGRESOURCETYPE>
<LANGSTRI NG | ang="en" >Assessnent </ LANGSTRI NG
</ LEARNI NGRESOURCETYPE>
</ EDUCATI ONAL>

Unordered Lists
Repeating the containing element at its specific location in the XML structure creates an

unordered list of contents. The order of the repetitions has no significance. For example:

<GENERAL>
<LANGUAGE>en_US</ LANGUAGE>
<LANGUAGE>f r _ FR</ LANGUAGE>
</ GENERAL >

In this example, each new instance of a definition of a language requires that the
LANGUAGE element be repeated. Whether an element list should be treated as ordered
or unordered is specified by the IEEE Learning Object Meta-data (LOM) specification.

Namespaces

XML is designed to allow individuals to create their own element tag names. It soon
became apparent that there could be problems if different DTDs were used in the same
document and those DTDs had elements using the same name. The XML Namespace
recommendation proposal specifies away to ensure that names from different DTDs can
be safely combined in a single document.

XML namespaces provide a simple method for qualifying element and attribute names
used in Extensible Markup Language documents by associating them with namespaces
identified by URL references. The XML binding document uses a default document IMS
namespace of http://www.imsproject.org/metadata/. An example namespace declaration
for the IMS is shown below.

Namespace declaration:

Copyright © 1999 |IEEE Working Group Draft (approved) 193

<RECORD xm ns="http://ww.insproject.org/ netadatal ">

The XML Namespace document provides more information about the flexible
capabilities of namespaces. Namespaces use their own DTD documents for validation. In
order for any documents that are based upon this XML binding to find an associated
DTD such as"IMS-MDOL.dtd", the IMS-MDO1.dtd file and the actual metadata record
must be placed in the same directory or the DTD must be found at the specified URL.

metadata record in the same directory if you wish to vaidate
he record locally.

|;4Iways make sure to place the IMS-MDOL.dtd and the

Special Handling Requirements for Meta-data Elements

There are some common structures that are used more than once within the metadata. The
use of these common structures may facilitate the creation of common data storage
structures in implementations. These structures have the suffix of "TYPE".
INTERACTIVITYTYPE is not a common structure, even though it endsin "TYPE". The
types defined in the LOM and encoded in the XML are:

LangStringType
DateType

LangStringType
LangStringType denotes a string that is encoded for a specific language or other
interpretable type. It is of the logical form:
LangStringType
LangString

Language

String
It is important to note how the logical form specified by the IEEE LOM appears to be
different from the XML binding suggested in this document. In the suggested binding of
this document, LangStringType is not an XML element. Rather LangString is an element
with a"lang" attribute which is used to define the language of a string value:

<LANGSTRI NG | ang="en">stri ng val ue</ LANGSTRI NG

The lang attribute can contain both language and country codes as defined in the XML
specification. Any element that contains a LANGSTRING element may contain multiple
LANGSTRING e ements with each one representing a different language

Each LANGSTRING within an element is considered to
contain the same information, differing by language.

The XML 1.0 specification aso allows the lang attribute to be assigned an arbitrary value
that is agreed upon by partiesin private use. These attributes are identified by the prefix

Copyright © 1999 |IEEE Working Group Draft (approved) 194

"x-"or "X-". This practice is strongly discouraged for IMS metadata records.

DateType

DateType is aformatted date. There are two subelements representing the two different
date formats used. Precise date and time information is formatted according to the ISO
8601 specification. Point in time and time duration information is captured in the
DateTime element. More general date and time information is captured using the
Description element. A DateType may contain values for both a DateTime and
Description.

DateType has the logical structure of:

Dat eType
Dat eTi ne
Descri ption
LangStri ngType
LangStri ng
Language
String

It is important to note that, just as with the LangStringType, the logical form specified by
the IEEE LOM for DateType appears to be different from the XML binding suggested in
this document. In this binding, DateType is not an XML element. Rather Date is an
element with two subelements. DateTime and Description.

The DateTime element makes use of the format dictated by the ISO8601 specification
Dates are captured using the CCY'Y-MM-DD form while Time elements are specified as
hh:mm:ss. There is a'so the ability to specify Time Zone Determination information by
adding "+hh:mm" to indicate differences in time zones. Both the date and time value are
combined using the capital "T" character to separate them. Three examples of this are
found below:

Use DATETIME for precise dates and times. Use
DESCRIPTION for more general date time information.

<DATETI ME>1999- 07- 26<DATETI ME>

<DATETI ME>1999- 07-26T12: 15: 35<DATETI Me>
<DATETI ME>1999- 07-26T12: 15: 35+01: OO<DATETI M=>

Thereis aversion of the ISO8601 specification that is available through the W3C which
also specifies how a date range is represented and how date and time duration is
accurately represented. Readers may refer to the 1SO8601 specification available at:
http://www.w3.org/TR/NOTE-datetime for more detailed information on the usage of
date and time values.

Language elements
Meta-data authors may specify alanguage that will be used as the default language for

any LANGSTRING elements that are encountered. This is done by providing a value for
the LANGSTRING element that is contained by the METAMETADATA element. Each

Copyright © 1999 |IEEE Working Group Draft (approved) 195

individual occurrence of LANGSTRING may override this default value by declaring a
language and country code using the "lang" attribute.

‘Theﬁault language for a record can be s-pecified in the

MetaM etaData category. Use individual LANGSTRING
elements to override the default language.

TaxonPath elements

In most cases, the value of using the TAXONPATH element liesin the ability to locate
the source of the taxonomy. If the source for a TAXONPATH is not provided or doesn’'t
map to an existing, logical source then the element should contain something useful
regarding how to location information about the taxonomy.

Always try to provide a SOURCE element when using the
TAXONPATH element.

vCard elements

There are at least two elements in the IEEE LOM that require contributing entity
information; elements LifeCycle.Contribute.Entity and MetaM etaData. Contribute.Entity.
Both specify the vCard specification as the source for representing these elements data.

When using only IMS Core elements, the formatted name or "FN" element from the
vCard specification should contain the name of the individual contributing to the learning
resource of metametadata of the resource. If a company, rather than an individual,
contributed to the resource or resource metametadata, the or ganization or "ORG"
element from the vCard specification should be used. Thisis illustrated below:

<CENTI TY>

<VCARD>
BEG N: vCard
FN: Lotta Data
END: vCar d

</ CENTI TY>

Asfar as most XML parsers are concerned, the information between the <VCARD> and
</VCARD> tagsisjust abunch of text. It is up to metadata implementers to individually
determine how they will process vCard information. The vCard specification allows for a
rich set of information to be captured as the example below illustrates. The reader is
directed to the "Using the vCard Specification” portion of this document and the vCard
specification itself for more details regarding its usage.

Keywords

The elements General.K eywords and Classification.Keywords are found in the IMS
metadata set. It is expected that the keywords describing a learning resource are likely to
be provided in multiple languages. To accommodate this, the IMS XML binding suggests
that keywords and short, keyword phrases be represented as separate LANGSTRING
elements rather than a comma-delimited text string as in the example below:

|Use multiple LANGSTRING elements to represent keywords

Copyright © 1999 |IEEE Working Group Draft (approved) 196

and keyword phrases.

<KEYWORDS>

<LANGSTRI NG | ang="en" >oper ant
condi ti oni ng</ LANGSTRI NG

<LANGSTRI NG | ang="en" >psychol ogy</ LANGSTRI NG>
<LANGSTRI NG | ang="en" >si nul at i on</ LANGSTRI NG>
<LANGSTRI NG | ang="en" >pr ogr anx/ LANGSTRI NG
<LANGSTRI NG | ang="en" >shapi ng</ LANGSTRI NG>
<LANGSTRI NG | ang="en" >npbuse</ LANGSTRI NG>
<LANGSTRI NG | ang="en" >l earn by doi ng</ LANGSTRI NG

</ KEYWORDS>

Extensibility

Some metadata providers will find the current element set defined in the IMS metadata as
too restrictive to accomplish their metadata purposes. To ensure metadata extensibility,
the IEEE LOM Base Document requires that there be no limit on potential extensions to
the metadata as long as the integrity of the specified metadata is not impaired. An
extension is the addition of information to an existing metadata XML structure. There are
two general ways to extend IMS metadata:

1. One or more elements may be added to the structure using el ements defined in the
|[EEE LOM Base Document; and

2. One or more elements may be added to the structure using elements that are not
defined in the LOM specification.

These two types of extension are defined as:

1. Useof elements from the LOM: The LOM specification contains some el ements
with definitions that are not specific for any particular context. The context in
which an element is placed provides specificity for its definition. These elements
may be reused as long as the definition is not changed.

2. Use of elements not contained in the LOM specification: New elements may be
introduced and used to extend the structure.

The XML binding does not inhibit either of these types of metadata extension. The XML
binding defines the Extension element as the element used for indicating where a set of
extension elements can be found in the metadata structure. In the IMSMDOL1.dtd file the
EXTENSION element exists in every element's content model allowing every element to
contain one or more EXTENSION elements. The only element without an extension
capability isIDENTIFIER, asit is areserved word. The EXTENSION element's DTD
declaration is:

Use the EXTENSION element to extend the metadata
structure.

Copyright © 1999 |IEEE Working Group Draft (approved) 197

<! ELEMENT EXTENSI ON ANY>

An example of the inclusion of EXTENSION in the content model of element
COVERAGE is:

<! ELEMENT COVERAGE (LANGSTRI NGTYPE*, EXTENSI| ON?) >
The use of the EXTENSION element is illustrated as follows:

<COVERAGE>
<LANGSTRI NG>1880- 1900</ LANGSTRI NG
<EXTENSI ON>
<ROLE>Dat e Range</ ROLE>
</ EXTENSI ON>
</ COVERAGE>

The contents, but not a content model, of an extension must be declared in an internal or
external DTD. Many extensions can be created through the use of existing elements. Care
must be used with internal DTDs, as they override external DTD declarations. The
contents of an extension must obey the attribute and content models of the elements
employed. New elements that duplicate the definitions of existing elements should not be
introduced.

Prefacing the EXTENSION element with an appropriate namespace may usefully
reference descriptions of extensions. For example, a group such as the Advanced
Distributed Learning (ADL) initiative may wish to add the "adl" prefix to an extension
element to uniquely identify ADL extensions. An example of thisis show below:

<LEARNI NGCONTEXT>

<LANGSTRI NG | ang="en">M |l itary Trai ni ng</ LANGSTRI NG>
<EXTENSI ON adl| : t ype="Topi c">
<TI TLE>Roman military tactics</TlITLE>
<LANGSTRI NG | ang="en" >Thi s exanpl e di scusses how

t he Romans
defi ned many aspects of nodern warfare.

</ LANGSTRI N&
</ EXTENSI ON>

</ LEARNI NGCONTEXT>
This serves to note the entire extension structure. Extensions should always be added at

the lowest point (farthest from the root element) in the hierarchy possible, to the degree
that the structure defines the meaning of the extension.

Using the vCard Specification

The IMS XML binding uses the vCard specification wherever the Entity element is
defined. An Entity, asfar as IMS metadata is concerned, represents a person or

Copyright © 1999 |IEEE Working Group Draft (approved) 198

organization. The IMS binding uses the clear text form of the vCard specification. The
vCard specification defines the clear text form as a"Simplegram”. This is not intended
as a complete description of the vCard coding; it is intended to provide some guidelines
for smple cases. The vCard specification is located at http://www.imc.org/pdi/.

The vCard specification defines a set of properties that contain the information about an
entity. The default character set encoding for the vCard is 7-bit US-ASCII. The default
character set can be overridden for an individual property using the "CHARSET"
property parameter. For example, the SO 8859-8 or Latin/Hebrew character set used in
an address is specified by:

ADR; CHARSET=I SO- 8859- 8: ...

It is also possible to set the encoding for the entire record to another encoding. See the
vCard specification for further instructions. The default language is "en-US", which may
similarly be overridden for a property using the "LANGUAGE" property parameter.
Property names are case insensitive.

The general form of the Simplegram vCard encoding is:

BEG N: VCARD

Itens
END: VCARD

ltemsisalist of items separated by a any valid line ending protocol. For example, in 7-
bit ASCII, the Carriage Return (CR) character (ASCII decimal 13), the Line Feed
character (LF) (ASCII decimal 10), the Carriage Return character followed by aLine
Feed character (CRLF), or the Property Delimiter are line ending protocols. Property
parameter substrings are delimited by the Field Delimiter, specified by the Semi-Colon
(;) character (ASCII decimal 59). Each item is of the general form:

name: val ue A; value B CRLF

An example of an item with no substrings is the for matted name property, FN. FN isthe
full formatted name of a person:

FN. M. Janes Q Smth, Jr.

Some items may have multiple properties or parameter substrings. For example, a
person's name, N, can contain a Family Name, a Given Name, an Other Names, Prefix
and a Suffix. The property value is a concatenation of the Family Name (first field),
Given Name (second field), Additional Names (third field), Name Prefix (fourth field),
and Name Suffix (fifth field) strings separated by the Field Delimiter ";".

N: Smith; Janes; Q ; M. ; Jr

An unused substring, if not at the end of the list of substrings, is represented with a
semicolon only:

N: Smth; Janes; Q ;; Jr

Copyright © 1999 |IEEE Working Group Draft (approved) 199

Vcards may be organized to contain groups. The grouping of a comment property with a
telephone property is shown in the following example:

A. TEL; Hone: +1- 213- 555- 1234
A.NOTE: This is nmy vacation hone.

Below are some commonly used vCard properties, with substrings. Separate lines should
not be used for field substrings, but are used here for clarity:

Formatted Name:
FN: Text Val ue

Example:

FN: Dr. Thomas D. Wason, Sr.

Name:
N: Fam |y (Sur) Nane;
First (G ven) Nane;
O her Nanes;
Prefi x;
Suffix CRLF

Example:

N: Wason; Thomas; D. ; Dr. ; Sr

Address:

The property value is a concatenation of the Post Office Address (first field), Extended
Address (second field), Street (third field), Locality (fourth field, e.g., City), Region (fifth
field, e.qg., State), Postal (Zip) Code (six field), and Country (seventh field) strings:

ADR: P. O Box;

. Extended Address
Street;

Locality;

Regi on;

Post al Code;
Country CRLF

Example:

ADR: ; I M5 Project; 1421 Park Drive; Ral ei gh; North
Carolina; 27605-1727; United States of Anerica

Address Delivery Label:
LABEL: Text

Example:

LABEL; QUOTED- PRI NTABLE: | M5 Pr oj ect =0A=
1421 Park Dri ve=0A=
Ral ei gh, NC 27605-1727=0A=

Copyright © 1999 |IEEE Working Group Draft (approved) 200

Note the use of the escaped line feed (=0A=). The property parameters are preceded by a
semicolon (;) after the property name. They are optional, defining the uses of the
Délivery Labdl.
Organization:
The property value is a concatenation of the Organization Name (first field),
Organizational Unit (second field) strings. Additional positional fields, if specified,
contain additional Organizational Units:
ORG Organi zati on Nane;
Organi zational Unit[;
Organi zational Unit] CRLF

Example:
ORG | M5 Project; Meta Data Team

Electronic Mail:
EMAIL; Electronic Mail Type: email

Exanpl e:

EMAI L; | NTERNET: t wason@ nspr oj ect . org
Telephone:

TEL: t el ephone nunber
Example:

TEL: +1 919. 839. 8187

All of these previously described properties are included in the following example:

BEG N: VCARD

N: Wason; Thonmas; D. ; Dr. ; Sr.

FN: Thomas D. Wason, Ph. D.

ORG | M5 Project; Meta Data Team

ADR: ; | M5 Project; 1421 Park Drive; Ral ei gh; North
Carolina; 27605-1727; United States of Anmerica

TEL: +1 919. 839. 8187

EMAI L; | NTERNET: t wason@ nspr oj ect. org

LABEL; QUOTED- PRI NTABLE: | M5 Pr oj ect =0A=

1421 Park Drive=0A=

Ral ei gh, NC 27605-1727=0A=

USA

END: VCARD

Sample Meta-data Record
<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE RECORD SYSTEM "http://ww. i nsproject.org/ XM/ | Ms-MDO1. dt d" >

<l-- Reference to master DID at IMsS site. -->
<!'--DOCTYPE RECORD SYSTEM "I Ms- MDO1. dtd" -->
<l-- Use this doc type declaration for references to a local dtd. -->

Copyright © 1999 |IEEE Working Group Draft (approved) 201

<RECORD xm ns="http://ww. i nmsproject.org/netadatal">
<l-- 1999-08-18, Thomas D. Wason: Sniffy0l.xm . A conplete neta-data
set. A fewenpty fields. Located at
http://ww. insproject.org/xm/SniffyOl. xm -->
<l-- The full IEEE - I M5 Learning Object Meta-data in XM.. -->
<METAMETADATA>
<CATALOGENTRY>
<CATALOGUE>| Ms- Test </ CATALOGUE>
<ENTRY>
<LANGSTRI NG>1999. 000002</ LANGSTRI NG>
</ ENTRY>
</ CATALOGENTRY>
<CONTRI BUTE>
<ROLE>
<LANGSTRI NG | ang="en" >Aut hor </ LANGSTRI NG
</ ROLE>
<CENTI TY>
<l-- Sinple vCard exanple -->
<VCARD>
BEGQ N: VCARD
N: Wason; Thomas; D. ; Dr. ; Sr.
FN: Thomas D. Wason, Ph.D.
ORG | M5 Project; Meta Data Team
ADR: ; | MS Project; 1421 Park Drive; Ral ei gh; North Carolina; 27605-
1727;United States of Anerica
TEL: +1 919. 839. 8187
EMAI L; | NTERNET: t wason@ nspr oj ect. org
LABEL ; QUOTED- PRI NTABLE: | MS Pr oj ect =0A=
1421 Park Drive=0A=
Ral ei gh, NC 27605-1727=0A=
USA
END: VCARD
</ VCARD>
</ CENTI TY>
<DATE>
<DATETI ME>1999- 08- 05</ DATETI ME>
</ DATE>
</ CONTRI BUTE>
<METADATASCHEME>| EEELOM 1. 0</ METADATASCHEME>
<LANGUAGE>en- US</ LANGUAGE>
<l-- English as default neta-data | anguage. -->
</ METAMETA- DATA>
<GENERAL >
<TI TLE>
<LANGSTRI NG | ang="en- US">Sni ffy The Virtual Rat</LANGSTRI NG
<LANGSTRI NG | ang="fr">Sniffy Virtuel |e Rat</LANGSTRI NG
</ TI TLE>
<CATALOGENTRY>
<CATALOGUE>| SBN</ CATAL OGUE>
<ENTRY>
<LANGSTRI NG>0- 534- 26702- 5</ LANGSTRI NG>
</ ENTRY>
</ CATALOGENTRY>
<LANGUAGE>en- US</ LANGUAGE>
<DESCRI PTI ON>
<l--English description-->
<LANGSTRI NG | ang="en- US">A conputer programthat enables students

Copyright © 1999 |IEEE Working Group Draft (approved) 202

to explore the principles of shaping and partial reinforcenent in
operant conditioning, using a "virtual rat" named Sniffy. Each student
| earns by doi ng-conditioning his or her own rat-and experiences many
benefits of animal experinentation but none of the drawbacks associ ated
with using live ani mals. </ LANGSTRI NG
<!--French Description -->
<LANGSTRI NG | ang="fr">Un programe machi ne qui pernet à des
étudi ants d' explorer les prinicples de la formation et du renfort
partiel dans |'opérateur conditionnant, utilisant " un rat virtuel
" a nom®é Sniffy. Chaque étudi ant apprend par le faire-
conditioning ses propres rat-et éprouve beaucoup d'avant ages
| ' expérinentati on ani mal e de mai s aucune des i nconvé nients
associ é s à utiliser |es animux vivants. </LANGSTRI NG
</ DESCRI PTI ON>
<KEYWORDS>
<l--English Keywords, unordered |ist-->
<LANGSTRI NG | ang="en" >oper ant condi ti oni ng</ LANGSTRI NG
<LANGSTRI NG | ang="en" >psychol ogy</ LANGSTRI NG
<LANGSTRI NG | ang="en" >si nul at i on</ LANGSTRI NG>
<LANGSTRI NG | ang="en" >pr ogr an</ LANGSTRI NG>
<LANGSTRI NG | ang="en" >shapi ng</ LANGSTRI NG>
<LANGSTRI NG | ang="en" >r at </ LANGSTRI NG>
<LANGSTRI NG | ang="en" >l earn by doi ng</ LANGSTRI NG
</ KEYWORDS>
<KEYWORDS>
<l--French keywords, unordered list-->
<LANGSTRI NG |l ang="fr">trai tenent d' opérateur </ LANGSTRI NG
<LANGSTRI NG | ang="fr">psychol ogi e </ LANGSTRI NG>
<LANGSTRI NG | ang="fr" >si nmul at i on</ LANGSTRI NG>
<LANGSTRI NG | ang="fr " >pr ogr anme</ LANGSTRI NG>
<LANGSTRI NG | ang="fr">f or mat i on</ LANGSTRI NG>
<LANGSTRI NG | ang="1fr">r at </ LANGSTRI NG>
<LANGSTRI NG | ang="fr">apprenez en fai sant </ LANGSTRI NG
</ KEYWORDS>
<COVERAGE>
<LANGSTRI NG >
</ COVERAGE>
<STRUCTURE>
<LANGSTRI NG>Hi er ar chi cal </ LANGSTRI NG>
</ STRUCTURE>
<AGGREGATI ONLEVEL>2</ AGGREGATI ONLEVEL >
</ GENERAL>
<L| FECYCLE>
<VERSI ON>
<LANGSTRI NG>4. 5</ LANGSTRI NG>
</ VERSI O\>
<STATUS>
<LANGSTRI NG | ang="en" >Fi nal </ LANGSTRI NG>
</ STATUS>
<l--Contains an unordered |ist of CONTRIBUTE-->
<CONTRI BUTE>
<ROLE>
<LANGSTRI NG | ang="en" >Aut hor </ LANGSTRI NG
</ ROLE>
<l--Contains an ordered list of CENTITY-->
<CENTI TY>
<VCARD>

Copyright © 1999 |IEEE Working Group Draft (approved) 203

BEG N: vCard
FN: Lest er Kranes
END: vCar d
</ VCARD>
</ CENTI TY>
<CENTI TY>
<VCARD>
BEG N: vCard
FN: Jeff G aham
END: vCar d
</ VCARD>
</ CENTI TY>
<CENTI TY>
<VCARD>
BEG N: vCar d
FN: Tom Al | oway
END: vCar d
</ VCARD>
</ CENTI TY>
<DATE>
<DATETI ME>1995</ DATETI Me>
</ DATE>
</ CONTRI BUTE>
<CONTRI BUTE>
<ROLE>
<LANGSTRI NG | ang="en" >Techni cal
</ ROLE>
<CENTI TY>
<VCARD>
BEG N: vCard
FN: Greg W1 son
END: vCar d
</ VCARD>
</ CENTI TY>
</ CONTRI BUTE>
<CONTRI BUTE>
<ROLE>

| mpl enent er </ LANGSTRI NG>

<LANGSTRI NG | ang="en" >Publ i sher </ LANGSTRI NG>

</ ROLE>
<CENTI TY>
<VCARD>
BEG N: vCar d

ORG. Br ooks/ Col e publishing; | nternational

END: vCar d
</ VCARD>
</ CENTI TY>
<DATE>
<DATETI ME>1995</ DATETI Me>
</ DATE>
</ CONTRI BUTE>
</ LI FECYCLE>
<TECHNI CAL>
<FORMNAT/ >
<Sl| ZE>1032353</ S| ZE>

Thonmson Publ i shi ng Conpany

<LOCATI ON type="URI">htt p://ww. br ookscol e. conm</ LOCATI ON>

<REQUI REMENT S>
<TYPE>

Copyright © 1999 |IEEE Working Group Draft (approved) 204

<LANGSTRI NG | ang="en">Cper ati ng Systenx/ LANGSTRI NG>
</ TYPE>
<NAME>
<LANGSTRI NG | ang="en" >M5- DOS</ LANGSTRI NG
</ NAME>
<M NI MUMWVERSI ON>5. 0</ M NI MUMVERSI ON>
<MAXI MUWERSI OV >
</ REQUI REMENTS>
<I NSTALLATI ONREMARKS>
<LANGSTRI NG | ang="en">Load from di skett e</ LANGSTRI NG
</ | NSTALLATI ONREMARKS>
<OTHERPLATFORMREQUI REMENTS>
<LANGSTRI NG | ang="en">W || not run in browser.</LANGSTRI NG
</ OTHERPLATFORMREQUI REMENTS>
<DURATI ON>
<DATETI ME>0000- 00- 00TO1: 20</ DATETI ME>
</ DURATI ON>
</ TECHNI CAL>
<EDUCATI| ONAL>
<I NTERACTI VI TYTYPE>
<LANGSTRI NG>Act i ve</ LANGSTRI NG>
</ | NTERACTI VI TYTYPE>
<LEARNI NGRESOURCETYPE>
<LANGSTRI NG | ang="en" >Si nul at i on</ LANGSTRI NG
</ LEARNI NGRESOURCETYPE>
<| NTERACTI VI TYLEVEL>3</ | NTERACTI VI TYLEVEL>
<SEMANTI| CDENSI TY>2</ SEMANTI CDENSI TY>
<| NTENDEDENDUSERROL E>
<LANGSTRI NG | ang="en" >Lear ner </ LANGSTRI NG>
</ | NTENDEDENDUSERROL E>
<l--May be an ordered list of intended user roles with the nobst
rel evant first.-->
<LEARNI NGCONTEXT>
<LANGSTRI NG | ang="en" >Secondary Educati on</ LANGSTRI NG
</ LEARNI NGCONTEXT>
<TYPI CALAGERANGE>
<LANGSTRI NG>12- 99</ LANGSTRI NG>
</ TYPI CALAGERANGE>
<Dl FFI CULTY>2</ DI FFI CULTY>
<TYPI CALLEARNI NGTI MVE>
<DATETI ME>0000- 00- 00T03: 00</ DATETI ME>
</ TYPI CALLEARNI NGTI ME>
<DESCRI PTI ON>
<LANGSTRI NG | ang="en">I nteractive teaching of the concepts of
operant conditioni ng. </ LANGSTRI NG>
</ DESCRI PTI ON>
<LANGUAGE>en_US</ LANGUAGE>
</ EDUCATI ONAL >
<RI GHTS>
<COST>
<LANGSTRI NG | ang="en" >yes</ LANGSTRI NG>
</ COST>
<COPYRI GHTOROTHERRESTRI CTI ONS>
<LANGSTRI NG>yes</ LANGSTRI NG>
</ COPYRI GHTOROTHERRESTRI CTIl ONS>
<DESCRI PTI ON>
<LANGSTRI NG | ang="en">Copyri ght 1995 Brooks Col e

Copyright © 1999 |IEEE Working Group Draft (approved) 205

Publ i shi ng</ LANGSTRI NG>
<LANGSTRI NG | ang="en">Cont act publisher to purchase</LANGSTRI NG
</ DESCRI PTI ON>
</ Rl GHTS>
<RELATI ON\>
<KI ND>
<LANGSTRI NG | ang="en" >I sRef er encedBy</ LANGSTRI NG
</ KI ND>
<RESOURCE>
<I--I DENTI FI ER reserved for |ater use. Do not use.-->
<DESCRI PTI ON>
<LANGSTRI NG | ang="en" >Conpani on book of the sane
nane. </ LANGSTRI NG
</ DESCRI PTI ON>
</ RESOURCE>
</ RELATI ON>
<ANNOTATI ON>
<CENTI TY>
<VCARD>
BEGQ N: VCARD
FN: Stuart Sutton
ORG. GEM Syracuse University
END: VCARD</ VCARD>
</ CENTI TY>
<DATE>
<DATETI ME>1999- 06- 10</ DATETI ME>
</ DATE>
<DESCRI PTI ON>
<LANGSTRI NG | ang="en- US">A useful sinulation for the student new
to concepts of behavioral science.</LANGSTRI NG
</ DESCRI PTI ON>
</ ANNOTATI ON>
<CLASSI FI CATI ON>
<PURPCSE>
<LANGSTRI NG | ang="en" >Di sci pl i ne</ LANGSTRI NG
</ PURPOSE>
<TAXONPATH>
<SOURCE>Dewey </ SOURCE>
<I--Ordered |ist of Taxons-->
<TAXON>
<I D>300</ | D>
<ENTRY>
<LANGSTRI NG | ang="en" >Soci al Sci ences</ LANGSTRI NG
</ ENTRY>
</ TAXON>
<TAXON>
<| D>320</ | D>
<ENTRY>
<LANGSTRI NG | ang="en" >Pol i ti cal Sci ence</ LANGSTRI NG
</ ENTRY>
</ TAXON>
</ TAXONPATH>
<TAXONPATH>
<SOURCE>LCSH</ SOURCE>
<I--Ordered |ist of Taxons-->
<TAXON>
<| D>B</ | D>

Copyright © 1999 |IEEE Working Group Draft (approved) 206

<ENTRY>
<LANGSTRI NG | ang="en" >Phi | osophy, Psychol ogy,
Rel i gi on</ LANGSTRI NG
</ ENTRY>
</ TAXON>
<TAXON>
<I D>F</ | D>
<ENTRY>
<LANGSTRI NG | ang="en" >Psychol ogy</ LANGSTRI NG
</ ENTRY>
</ TAXON>
<TAXON>
<| D>180</| D>
<ENTRY>
<LANGSTRI NG | ang="en" >Experi nental Psychol ogy</ LANGSTRI NG
</ ENTRY>
</ TAXON>
</ TAXONPATH>
<DESCRI PTI ON>
<LANGSTRI NG | ang="en- US">pri nci pl es of operant
condi ti oni ng</ LANGSTRI NG>
</ DESCRI PTI ON>
<KEYWORDS>
<LANGSTRI NG | ang="en" >oper ant condi ti oni ng</ LANGSTRI NG
<LANGSTRI NG | ang="en" >psychol ogy</ LANGSTRI NG
</ KEYWORDS>
</ CLASSI FI CATI ON>
</ RECORD>

Appendix
Additional Resources

IMS XML Documents

IMS-MDOQL1.dtd is located at: http://www.imsproject.org/xml/IMS-MDO01.dtd

IMS-MDO1.xml is located at: http://www.imsproject.org/xml/IMS-MDOL1.xml

IMS Meta-data Documents

The IMS Resource Meta-data Best Practice and Implementation Guide can be
found at: http://www.imsproject.org/metadata/mdbestO1.html

Copyright © 1999 |IEEE Working Group Draft (approved) 207

The IMS Learning Resource Meta-data Information Model document can be
found at: http://www.imsproject.org/metadata/mdinfo01.html

ISO/IEC 10646

ISO (International Organization for Standardization). 1SO/IEC 10646-1993 (E).
Information technology -- Universal Multiple-Octet Coded Character Set (UCS) -
- Part 1. Architecture and Basic Multilingual Plane. [Geneva): International
Organization for Standardization, 1993 (plus amendments AM 1 through AM 7).

Unicode

The Unicode Consortium. The Unicode Standard, Version 2.0. Reading, Mass.:
Addison-Wesley Developers Press, 1996.

VCard

vCard Specification http://www.imc.org/pdi/

XML

XML Version 1.0 specification of the W3C: http://www.w3.0rg/TR/1998/REC-
xml-19980210

XML Namespace Recommendation of W3C: http://www.w3.0rg/TR/1999/REC-
xml-names-19990114

About This Document

Title IMS Learning Resources Meta-data XML Binding Specification
Authors Thomas D.Wason, Thor Anderson, Steve Griffin

\Version 1.0

Version Date August 20, 1999

Status Final

This document describes the XML binding for the IMS Learning
Resource Meta-data Information Model. The model is based on the
Summary IEEE Learning Technology Standards Committee (LTSC) Learning
Object Meta-data base document, plus modifications approved by the
IMS Technical Board and submitted to IEEE. For links to the related

Copyright © 1999 |IEEE Working Group Draft (approved) 208

|EEE documents, please see
http://www.imsproject.org/metadata/ mdinfo0l1.html

Revision L ast revised August 20, 1999
Information

Document) : . .
L ocation !!http.//www.l msproject.org/metadata/mdbind01.html

Copyright © 1999 |IEEE Working Group Draft (approved) 209

This page was intentionally |eft blank.

Appendix E — Reference Material

AICC Learning Model Definitions®

AICC CMI TERM | AICC “Hierarchy of
CBT Components”
Curriculum
COURSE Course A complete unit of training. A course generally represents what a student
needs to know in order to perform a set of related skills or master a related
body of knowledge.
Course structure provides a method to group lessons into sequences for
assignment. This entails support for lesson hierarchies which allow the
course developer to define predecessor and successor relationships.”
BLOCK An arbitrarily defined grouping of course components. Blocks are composed
of related assignable units or other blocks.
This is a term used in the AICC document CMI Guidelines for Interoperability.
A block may correspond to any level of the AICC instructional hierarchy
above lesson, up to and including course.
Chapter
Sub-Chapter
Module
Assignable Unit | Lesson The smallest element of instruction or testing to which a student may be
(AU) routed by a CMI system. It is the smallest unit the CMI system assigns and
tracks.
(aka: lesson)
A program or lesson launched by the CMI system.
Lesson: A meaningful division of learning that is accomplished by a student
in a continuous effort -- that is at one sitting. That part of the learning that is
between designed breaks. Frequently requires approximately 20 minutes to
an hour.
OR
A grouping of instruction that is controlled by a single executable computer
program.
Or
A unit of training that is a logical division of a subchapter, chapter, or course.
Topic
Sequence
Frame
Object

6 Excerpted from: DOCUMENT NO. CMI001 - CM| Guidelines for Interoperability, AICC ORIGINAL
RELEASE DATE 25-Oct-93 Revision 2.1 release 18 Jun 98

Copyright © 1999 |IEEE Working Group Draft (approved) 211

Army Learning Structure Definitions

COURSE

A complete series of instructional units(phases, modules and lessons) identified by a common title or
number.

MODULE

A- group of lessons in an approved course of instruction; it could consist of a single lesson, e.g. for
distance learning. Synonymous with annex and sub-course. A module includes one or more training
media/methods or combination thereof.

LESSON

The basic building block of all training. The level at which training is designed in detail. The lesson is
structured to facilitate learning. A lesson normally includes telling or showing the soldier what to do
and how to do it, an opportunity for the soldiers to practice, and providing the soldiers feedback
concerning their performance. A lesson may take the form of an instructor presented lesson, a SGI
presented lesson, or a self-paced lesson, such as a correspondence course or CBI lesson.

- An instructor presented lesson or SGI presented lesson is documented as a lesson plan.

- A self-paced lesson must be of sufficient detail that the student can learn the material to the
established learning objective standard on his own.

- An extension training lesson is a self paced instructional program developed, reproduced, and
packaged for distribution to soldiers in the field. these lessons consist of a terminal learning objective,
instructional text, practice, and immediate feedback to the soldier.

LEARNING
OBJECTIVE

A precise three-part statement describing what the student is to be capable of accomplishing in terms
of the expected student performance under specific conditions to accepted standards. Learning
objectives clearly and concisely describe student performance required to demonstrate competency in
the material being taught. Los focus the training development on what needs to be trained and
focuses student learning on what needs to be learned.

Both terminal and enabling objectives are learning objectives. Criterion-referenced Instruction (CRI) -
the instruction aimed at training students to perform established learning objectives (performance
criteria) to the prescribed standard. CRI is the selected instructional methodology for training within
the Army.

LEARNING
STEPS

A student activity that leads toward achievement of a learning objective. Learning steps are
determined when the objective is broken down into its component parts. Often an explicit hierarchical
relationship consisting of terminal learning objective, enabling learning objective, and learning step in
maintained. Learning steps are identified and delineated in the lesson, training support package, or
Army Correspondence Course Program outline during the design phase. It should be performance
oriented.

MEDIA

Media - word document, PowerPoint slide or presentation, avi file that is used to assist the training
process.

Copyright © 1999 |IEEE Working Group Draft (approved) 212

Air Force Shared Content Object Model

CATEGORY DEFINITIONS EXAMPLE/CONTENT
Course A complete, organized series of Course Name - Labor-Management Relations (LRM)
instructional elements (modules, lessons, Course Number - OC233M
learning objectives) identified by a title Who can take the course - This course is designed for civilian and military
and/or course version or number. personnel responsible for any aspect of Labor-Management Relations. This
course is meant as a basic introduction for personnel working with Labor-
Management Relations. It is made up of eight modules.
Date Activated - 06-30-99
Block/ A series of lessons that cover a general Module Name - Bargaining Principles and Practices
Module subject. A teaching unit in an approved Fifth module of this course, explains some of the different types of bargaining
course of instruction, consisting of one or methods, ground rules, bargaining principles and tactics, and some of the
more lessons with an interlacing theme of various pitfalls. this module is composed of three lessons
function or notion. “Block” is typically used
in technical training courses and usually
represents a testing milestone. “Module” is
associated with education courses.
Lesson An aggregation of related topics (the Lesson Name - Bargaining Preparation
smallest unit of teaching covering one The first lesson of Bargaining Principles and Practices. This lesson covers the
subject only). A division or exercise preparation that needs to take place prior to bargaining with labor or
describing what activity or steps are management. This is the lowest level that can effectively stand by itself.
required to achieve an objective. A single Contains topics -
continuous session of formal instruction in Topic Name - Selecting the Negotiation Team
terms of the expected student performance | One of the topics covered in the lesson Bargaining Preparation is Selecting the
under specific conditions. Negotiation Team.
This topic discusses how to select the right people to represent management
during negotiations. A topic is a complete thought, but is not capable of standing
alone. Most topics could easily be incorporated into a similar section in some
other course
Learning Defines learner performance expectations. Action - Selecting the Negotiation Team
Objective Includes terminal objectives and enabling Condition - You need to form a team to represent management during

objectives. Objectives require action,
condition, standard. Objectives are the
basis for student measurement

negotiations.

Standard - proper planning in selecting team members is crucial. Team
members should be selected by desirable personal characteristics to include
being a team player, a contributor, even-tempered, articulate, analytical, open-
minded, and positive.

Air University has chosen to use the model of Course, Module, Learning Objective, and Lesson which accommodates cognitive levels
of instruction and testing.

Copyright © 1999 |IEEE Working Group Draft (approved)

213

Marine Corps Learning Object Taxonomy

CURRICULUM

LO

COURSE

PHASE

LO
LO

LO

= LEARNING OBJECT

SUBCOURSE (ANNEX)

LESSON

TASK
LEARNING OBJECTIVE

LO

L
@)

LEARNING STEP

L | MEDIA
o

Mari ne Corps Learning Object

Copyright © 1999 |IEEE Working Group Draft (approved) 214

ADL Learning Taxonomy Mapping

Reference Function AICC Oracle | Asymetri Macromedia |DoD Enterprise | Army Learning Marine Canadian SCO
Model Level X Model Model Corps
COURSE Outer Container | Course Course Course Course Course Course Course Course
“Packaged (Block)
Collections”
BLOCK Nesting Block Topic Block Block Module Module Instructional | Performance
Container Group Unit Objective
" Nesting Block Topic Module Block Instructional Unit | Lesson (n/a)
Container Group (Lesson)
(N levels deep)
BLOCK Nesting Block Topic Lesson Block Learning Learning Lesson Enabling Object
“A Collection of | Container Objective Objective
Atoms” (N levels deep)
AU Reusable Assignable Activity Page Assignable Unit | ?? Learning Step Learning Teaching Point
“Atomic” Content Unit Objective
Raw Media Interaction Knowledge Raw Media
(No Metadata) Object (no metadata)
2Air Force (to be added)
3 Navy (to be added)
SCORM (1.0) Page 215

This page was intentionally left blank.

Appendix F — Document Change Summary

From 0.9.x.4 to 0.9.x.5 (edits 10-25,26-99)
- Added section 7.6 — examples of SCORM XML Metadata records derived from the IMS DTD
(illustrates some prospective aspects of conformance testing criteria)
Removed “old 0.7.3” metadata column in section 7.3 (now very obsolete)
Many small edits/cleanups throughout, (more to be done here)
Made elementsin section 7.3 the same for content and courses since they seemed so close
otherwise. Thismay change. See section 7.6.3.
Revamped section 7.3 updating to IEEE LOM 3.7 and adding all missing element categories
Added new references/links for related documents, esp. in appendix D; combined appendix E with
D sincethey are all Metadata related.
Made parameterString under au.launch in CSF DTD optional (thanks Tyde!)
Added citationsin section 2
Added examples to CSF format, sections 5.8.1+
From 0.9.x5 t0 0.9.x.6 (edits 10-27-99)
Misc. wordsmithing in section 5
Added missing text to 5.7 Extensibility
Added missing text to 5.8 Conformance Testing
Added missing text to 6.6 Conformance
Added missing text to 7.5 Conformance
Updated Appendix B
From 0.9.x6 t0 0.9.x.7 (edits 10-30-99)
Very minor wordsmithing sections 2, 3
Changed section 4 title to Definitions
Changed Compliance with conformance throughout

Fixed up numbering in section 5

Added new section 6.3 as a placeholder for API adapter discussion; other sections renumbered up

one.

From 0.9.x7 to 0.9.x.8 (edits 11-11-99)

Minor edits throughout

Added section 8 Acronyms

Removed JSIM'S Example (Appendix A) — deemed obsolete

Removed Section 7.4 (Dictionary) since that has been incorporated within |EEE’ s table update

(3.8) Renumbered sections 7.5+ accordingly

Updated Section 7.3 (table) to reflect explanation changesin IEEE LOM version 3.8

From 0.9.x8 10 0.9.x.9 (edits 12-6-99)

Revised Section 5 asfollows:

1. Removed “assignments’ from the CSF and replaced it with “block” —this was because it
appears that the root node (formerly “assignments”) needs mostly all of the same elements as
“block”. Since “blocks’ nest n deep, it seemed to make sense to not differentiate between
root and nodes; i.e., they should be the same thing. Note that this does not appear to be the
case with nodes (blocks) and leaves (aus) since there are differences.

2. Removed “content” element (and its sub-elements) on the basis that the data that would be
contained in these elements should be available within externally referenced, L OM-based
metadata records.

From 0.9.x.9 to 0.9.x.10 (edits 12-7-99)
Section 5.6, 5.10 and figure 5.4.2a: renamed element “ score” to “masteryScore” and
eliminated sub-elements “ mastery”, “maximum”, and “minimum” since these elements don’t
belong here (they arein the CMI data model and have no meaning here; however,
“masteryScore” does have context-specific value. This element defines the mastery score the

SCORM (1.0) Page 217

student must achieve in this course context, which overrides whatever default mastery value
an au might have defined.
From 0.9.x.11t0 1.0
- Miscellaneous minor edits throughout
Added sections 1.1, 1.2, 1.3
Section 6.1 modified figure 6.1.a showing content/au
Added examplesto 6.3, 6.4
Added Section 6.6 — further defining content as Assignable Units (renumbered 6.7+)
Added data model tables
Added section 7.4 Stand-Alone XML Metadata Records
Added section 7.5 XML Schema, Namespaces and Extensibility
Renumbered old 7.4+ to 7.6+
Changed appendices sequence; moved dtd to appendix A
Minor edits throughout sections 1 and 2
Incorporated 3.5into 3.4
Added section 8 examples
Added examples and ref tables throughout
General editing
Editing Throughout

SCORM (1.0) Page 218

This page was intentionally |eft blank.

