Advanced)Distributed)Learning]

—_—

exXPeRIENCE
.

VERSION 1.0.1

SPECIFICATION RELEASE DATE: 1 OCTOBER 2013
THE ADVANCED DISTRIBUTED LEARNING (ADL) INITIATIVE

This document was authored by members of the Experience API Working Group (see list on
pages 3-4) in support of the Office of the Deputy Assistant Secretary of Defense (Readiness),
Director, Training Readiness and Strategy, Advanced Distributed Learning (ADL) Initiative.

This PDF copy of the specification was synchronized with the authoritative document that resides
on the ADL GitHub site - https://github.com/adinet/xAPI-Spec/blob/master/xAPl.md - on 1 October
2013 and is considered to be version 1.0.1. It represents a snapshot of the authoritative
document. Please go to https://github.com/adinet/xAPI-Spec to view the most current version of
the specification.

Note that this release of the XxAPI Specification is only a patch release. In accordance with
semantic versioning, which xAPI follows, there are no functional changes within this

version. Points have been clarified, including some areas of the document where conflicting
information may have been given. This document provides authority in such cases of
discrepancy. As this is only a patch release and not a minor version (dot release), ADL does not
encourage the maintenance of separate LRSs, content, tools, etc. for both 1.0.0 and 1.0.1
versions. The two should be functionally similar. Please see the versioning details of the
document for processes surrounding 1.0.X versions and other details. Certain areas of the
document were not revised, such as the contributors and examples; these updates will
accompany minor and major patches.

Please send all feedback and inquiries to: helpdesk@adlInet.gov

Copyright 2013 Advanced Distributed Learning (ADL) Initiative, U.S. Department of Defense

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except
in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS I1S" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions and
limitations under the License.

https://github.com/adlnet/xAPI-Spec/blob/master/xAPI.md
https://github.com/adlnet/xAPI-Spec
mailto:helpdesk@adlnet.gov
http://www.apache.org/licenses/LICENSE-2.0

ExXPERIENCE v1.0.1

TABLE OF CONTENTS

1.0 Revision History Of the SPECIfICALION...........cciiiiiiie et e e e s s e e e e e e s et e e e e e e s s ssntaaeeeeeeesesannrenneees 1
O o) (=30 1 T ot 01T A= o7 I AN d PRSP 3
2.1 ADL’S Rol€e in the EXPEIIENCE AP ..ottt e e e e e e s e et e e e e e e s e abnbeeeeeaeeeeaannes 3

P OLe] o1 171 o101 (o] &= PRI 3
2.1.1 WOrking Group PartiCiPANTSocuuueieiiiriieiiiiie ettt ettt sttt ettt et et e s as b e e e anbe e e s anb et e e sanbreeeeannnes 4

2.1.2 Requirements Gathering PartiCiPantScc.uuuiriiee i e e r e e e e s s st e e e e e e e s s snnnrnaees 5

2.3 Reading Guidelines for the non-technically INCIINEdoouiiiiiiiii e 5

T O = {1011 i o TP PPRTPTN 6
OS] £ 1 (<] 0 01T o R 8
4.1 SEAIEMENT PrOPEITIES ...ttt ettt ettt ettt ettt e e s a bt e e s b et e s aa b b et e e aab e e e e e s b et e e aanbe e e e enbe e e e e nbeeeeennns 8

o 0 1 RSP PPPRP 10

A.1.2 ACHOK e 10

TG T = 4 o PRSP PPPRP 14

A @ o= o PR URPPPPRP 16

T L= T | | RS OPERRN 22
SO0 1 (=) SRR 23

o A W0 TS = 1] o L PO PO PP PTPPPPPPPPPPTN 26

S IS o] =T o [P P TP OO TP PPOPPUPPPPTN 26

o e I T 0T] £ TP PP PUPPPPPPPPPPTN 27

o R O =T =1 o] o TP PPT T PPPPPUPPRPTN 28

g I I N =T 1 0 =T] £ TP PP PP UPPPPUPTPTTN 29

O I B = L= B O o] 1S = U £SO 32

4.2 RetrieVal Of STALEMENTSoiiiiii ittt e et e e e e e e s e bbb e e et e e e e e aabbbb e e e e e e e e s anbbbreeeeaaaeas 33

G Y o T o = o PSR 34

S T =0 [€= 1 (=T =T o1 35

5.0 MISCEIIANEOUS TYPES....eiiiitiiiee ittt ettt ettt ettt ettt ettt e ookttt e ok bttt a4kt e et e 4abb s et a4 kb et e e sabbe e e e s bbb e e e snbneaeennnneee s 36
LT R B T Tod 0 [1= o | AP TRPPPUPPPPPPTPTN 36

LT =Yg o [N F= Vo =20 1V = T o PR 36

TR T 4 (= 1 [0 1 USSR 37

o (o [T o111 =T g V=] = T oL WO PP PPPUPPPRRPTE 38

6.0 RUNIME COMMIUNICALIONueiiiiieie ittt e e e et e et e e e s e ettt eeeeeesa s esteeereeeeesaansstaeeeeeessaanstsseneeaeesaansssnneeaeeeesannnes 39
00 I = oo T 11 o PSPPIt 39

I N e I =T 51 o] o1 o (TP PPUPPPRTPTN 40

SRS Of0] o (o1 £ {1 0 [0 VAP P PP PPPPPPPRPPPP 41

L ST T ot U 1] P TP PRRPTE 42
I o o o =TT o) = Yol TR Yo7 =T o = 14 o OSSR 43

6.4.2 OAULh AUTNOFIZAION SCOPE.....c ittt ettt ettt e e e e e e s bbb et e e e e e e s e anbbbeeeeaaaeesaannnes 44

7.0 DAt TrANSTEE (REST) ..eiiiiuiiiiiiiiiiee ettt ettt sttt e sttt e e s bttt e e s bb et e e skttt e e et b s et e s bttt e e aasbe e e e s nbteeesnbneaesnnnaeeens 46
A I = g (o] g o T [T ST PP PPRUPT a7

FA AR = L] 11T oL N o D TP P PP P PP PPPPPPPPPPPPPPPPPRt 48
N R O Y= 1= 0 1= 48

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-0) i

ExXPERIENCE v1.0.1

7.2.2 POST SEAIEIMEINTS ... e s 48
7.2.3 GET SEAEIMENTS. ..cciiiiiiiiitie ettt ettt e e e s ettt e e e e e s s s bbb e e et e e e e e s e sbn b e e et e e e e e s aabnbrnneeeeeesaannnes 49
A Yoo [=To IES] = 11T 41T | € P SOOPRRPTN 51

RS I oo [1T o1 B PP PP P PP PP PPPPPPPPPPPPPPPR 52
A = L L= Y o 1 PSRRI 54
7.5 ACHVILY PIOFIlE AP ...ttt e et e e bt e s e b et e e ekt e e e e e s b e e e e e nbe e e e e nnnnes 56
ST 2 [T gL o)1 Y = SRR 58
A A o T T B o =TT 11 o= PSP PPPRRPT 60
AR S O3 (01T @ L o [T T =T o [=] £ O EERS 61
RS Y 11 To F= 11 I PSP PRRPT 62
O I I | Y SRR SS 62
Y 0] 0 1= o Lo = USSR 63
APPENAIX Al BOOKMAIKIEE ...ttt e et e e e st bt e e sbb e e e e abbeeeesabnneeeanes 63
Appendix B: Creating an "IE MOAe" REQUESTccoiiiiiiieii e 66
AppendiX C: EXamPIe STATEMENTScoiiiiiiiiiiiee ittt e et e e e sabb e e e sbe e e e e sbbeeeeanbneeeeanes 67
Appendix D: Example statement objects of different typescccooooooeiiiiiiiccce s 72
Appendix E: Example definitions for Activities of type "cmi.interaction”..........ccoooooieiiiiiiiiiieee e 74
Appendix F: Converting StatemMents 10 1.0.0......coi ittt e e e e e 80
Appendix G: Example Signed STatementccooooioiiiiii s 83
Appendix H: Table of All ENAPOINTSouiiiiiiiee ittt ettt e et e e e st e e e sbe e e e e abbeeeesnbneeeeanes 88

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-0) ii

ExXPERIENCE v1.0.1

THE EXPERIENCE API, VERSION 1.0.1

1.0 REVISION HISTORY OF THE SPECIFICATION

0.8 (ProjectTin Can API Deliverable) to 0.9 Rustici Software, who delivered the Project Tin

(March 31, 2012) Can API, made modifications to the API prior to
the April 2012 Kickoff Meeting. It was voted in
this meeting to move those changes into the
current spec and revision to 0.9.

"Core" Verbs and Activity types were removed
from the specification. References to these
Verbs in results, context, interactions, and
Activity definitions were also removed. It was
recommended that implementers prefer
community defined verbs to creating their own
Verbs.

0.90 to 0.95
(August 31, 2012)

+ Verbs, Activity types, and extension keys
are now URIs.

* Restructured and added language around
some of the other implementation details
and scope.

+ Changed from using a person-centric view
of Agents to a persona-centric view.

* Friend of a Friend (FOAF) Agent merging
requirement was removed.

+ Agent Objects must now have exactly 1
uniquely identifying property, instead of at
least one.

0.95t0 1.0.0 Various refinements and clarifications including:
(April 26, 2013)
* Adding attachments
« Activity metadata is now stored as JSON
rather than XML
* Changes to voiding Statements
+ Clarification and naming of the Document
APls
* Changes to querying the Statement API
+ Signed Statements

(May 21, 2013) » Corrected Table of Contents section
numbers
+ Changed URL and URI to IRL and IRI
where appropriate
» Fixed minor editorial inconsistencies

1.0.0to0 1.0.1 » Clarified ‘Requirements’ throughout
(October 1, 2013) » Applied a more consistent formatting
* Added more examples in the appendices
» Corrected typos and minor editorial
inconsistencies

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 1

expPerience A Fv1.0.1

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 2

ExXPERIENCE v1.0.1

2.0 ROLE OF THE EXPERIENCE API

The Experience APl is a service that allows for statements of experience to be delivered to and stored
securely in a Learning Record Store (LRS). These statements of experience are typically learning
experiences, but the API can address statements of any kind of experience. The Experience API is
dependent on Activity Providers to create and track these learning experiences; this specification
provides a data model and associated components on how to accomplish these tasks.

Specifically, the Experience API provides:

. The structure and definition of Statement, State, Actor, Learner, Activity and Objects, which are
the means by which experiences are conveyed by an Activity Provider.

. Data Transfer methods for the storage and retrieval (but not validation) of these Objects to/from
a Learning Record Store. Note that the systems storing or retrieving records need not be Activity
Providers. LRSs may communicate with other LRSs, or reporting systems.

. Security methods allowing for the trusted exchange of information between the Learning Record
Store and trusted sources.

The Experience APl is the first of many envisioned technologies that will enable a richer architecture
of online learning and training. Authentication services, querying services, visualization services, and
personal data services are some examples of additional technologies which the Experience API is
designed to support. While the implementation details of these services are not specified here, the
Experience API is designed with this larger architectural vision in mind.

ADL’s Role in the Experience API

The Advanced Distributed Learning (ADL) Initiative has taken on the roles of steward and facilitator in
the development of the Experience API. The Experience API is seen as one piece of the ADL Training
and Learning Architecture, which facilitates learning anytime and anywhere. ADL views the
Experience API as an evolved version of SCORM that can support similar use cases, but can also
support many of the use cases gathered by ADL and submitted by those involved in distributed
learning that SCORM could not enable.

Contributors

My thanks to everyone who contributed to the Experience API project. Many of you have called into
the weekly meetings and helped to shape the specification into something that is useful for the entire
distributed learning community. Many of you assisted in releasing code samples, products, and
documentation to aid those who are creating and adopting the specification. I'd also like to thank all of
those who were involved in supplying useful, honest information about your organization's use of
SCORM and other learning best practices. Through the use-cases, shared experiences, and
knowledge you have shared, ADL and the community clearly identified the first step in creating the
Training and Learning Architecture--the Experience API. You are truly the community leaders on
which we depend to make our training and education the very best.

Kristy S. Murray, Ed.D.

Director, ADL Initiative
OSD, Training Readiness & Strategy (TRS)

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 3

Working Group Participants

PERIENCE v1.0.1

Panjak Agrawal

Next Software

David N. Johnson

Clear Learning Systems

Solutions
Dan Allen Litmos Eric Johnson Planning and Learning
Technologies, Inc.
Anthony Altieri American Red Cross Patrick Kedziora Kedzoh
Jonathan Archibald | Brightwave John Kleeman Questionmark
Avron Barr Aldo Ventures, Inc. Dan Kuemmel Sentry Insurance

Steve Baumgartner

Richard Lenz

Organizational
Strategies, Inc.

Al Bejcek NetDimensions Fiona Leteney Feenix e-Learning
Marcus Birtwhistle | ADL Robert Lowe NetDimensions
Megan Bowe Rustici Software Tim Martin Rustici Software
Jeremy Brockman Bill McDonald Boeing
Jennifer Cameron Sencia Corporate Brian J. Miller Rustici Software
Web Solutions
Rob Chadwick ADL Kris Miller edcetera Training
Rich Chetwynd Litmos Dave Mozealous Articulate
Ben Clark Rustici Software Mike Palmer OnPoint Digital
Tom Creighton ADL Jeff Place Questionmark
Ingo Dahn University Koblenz- Jonathan Poltrack | ADL
Landau
Mark Davis Exambuilder Rick Raymer
Jhorlin De Armas Riptide Software Michael Roberts vTrainingRoom
Andrew Downes Epic Paul Roberts Questionmark
Russell Duhon SaLTBOX Kris Rockwell Hybrid Learning
Systems
David Ells Rustici Software Mike Rustici Rustici Software
Paul Esch Nine Set Chris Sawwa Meridian Knowledge

Solutions

Michael Flores

Here Everything’s
Better

Matteo
Scaramuccia

Steve Flowers

XPConcept

Ali Shahrazad

SaLTBOX

Richard Fouchaux

Ontario Human
Rights Commission

Aaron Silvers

ADL

Joe Gorup CourseAvenue Greg Tatka Menco Social Learning
Walt Grata ADL Stephen Tevorrow | Problem Solutions, LLC
Jason Haag ADL Chad Udell Float Mobile Learning
Doug Hagy Twin Lakes Anton Valan Omnivera Learning
Consulting Solutions
Corporation
Luke Hickey dominKnow Melanie VanHorn ADL
Thomas Ho Nick Washburn Riptide Software
Lang Holloman Andy Whitaker Rustici Software
Nikolaus Hruska ADL Lou Wolford ADL
Andy Johnson ADL

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01)

ExXPERIENCE v1.0.1

Requirements Gathering Participants

In collection of requirements for the Experience API, many people and organizations provided
invaluable feedback to the Sharable Content Object Reference Model (SCORM®), distributed learning
efforts, and learning technology efforts in general. While not an exhaustive listing, the white papers
gathered in 2008 by the Learning Education and Training Standards Interoperability (LETSI) group,
the Rustici Software UserVoice website, one-on-one interviews and various blogs were important
sources from which requirements were gathered for the Experience API specification.

Reading Guidelines for the non-technically inclined

This is a definitive document which describes how the Experience API is to be implemented across a
variety of systems. It is a technical document authored specifically for individuals and organizations
implementing this technology with the intent of such individuals developing interoperable tools,
systems and services that are independent of each other and interoperable with each other.

Whenever possible, the language and formatting used in this document is intended to be considerate
of non-technical readers because various tools, systems and services are based on the specification
set described below. For this reason, sections that provide a high-level overview of a given facet of
the Experience API are labeled description or rationale. Items in this document labeled as
requirements, details or examples are more technical.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 5

Activity

Activity Provider (AP)

Actor

Authentication

Authorization

Client

Community of Practice

Experience API (XAPI)

Immutable

Internationalized
Resource Identifier
(IRI)

Internationalized
Resource Locator (IRL)

Inverse Functional
Identifier

Learning Management
System (LMS)

Learning Record Store
(LRS)

MUST / SHOULD /
MAY

Profile

ExXPERIENCE v1.0.1

3.0 DEFINITIONS

An Activity is a type of Object making up the “this” in | did “this”; it is something with which an Actor
interacted. It can be a unit of instruction, experience, or performance that is to be tracked in meaningful
combination with a Verb. Interpretation of Activity is broad, meaning that Activities can even be tangible
objects such as a chair (real or virtual). In the statement "Anna tried a cake recipe", the recipe constitutes
the Activity in terms of the xAPI statement. Other examples of activities include a book, an e-learning
course, a hike or a meeting.

The software object that is communicating with the LRS to record information about a learning
experience. May be similar to a SCORM package in that it is possible to bundle learning assets with the
software object that performs this communication, but an Activity Provider may also be separate from the
experience it is reporting about.

An identity or persona of an individual or group tracked using Statements as doing an action (Verb) within
an Activity.

The concept of verifying the identity of a user or system. Authentication allows interactions between the
two “trusted” parties.

The affordance of permissions based on a user or system's role; the process of making one user or
system "trusted" by another.

Refers to any entity that may interact with an LRS. A Client can be an Activity Provider, reporting tool, an
LMS, or another LRS.

A group, usually connected by a common cause, role or purpose, which operates in a common modality.

The API defined in this document, the product of "Project Tin Can". A simple, lightweight way for any
permitted Actor to store and retrieve extensible learning records, learner and learning experience profiles,
regardless of platform.

Adjective used to describe things which cannot be changed. With some exceptions, Statements in the
XAPI are immutable. This ensures that when statements are shared between LRSs, multiple copies of the
statement remain the same.

A unique identifier which may be an IRL. In the xAPI, all IRIs should be a full absolute IRIs including a
scheme. Relative IRIs should not be used. IRLs should be defined within a domain controlled by the
person creating the IRL.

In the context of this document, an IRL is an IRI that when translated into a URI (per the IRI to URI rules),
is a URL. Some communities of practice simply use URL even if they use IRIs, which isn't as technically
correct within xAPI.

An identifier which is unique to a particular persona or group. Used to identify Agents and Groups.

"A software package used to administer one or more courses to one or more learners. An LMS is typically
a web-based system that allows learners to authenticate themselves, register for courses, complete
courses and take assessments” (Learning Systems Architecture Lab definition). In this document the term
will be used in the context of existing systems implementing learning standards.

A system that stores learning information. Prior to the xAPI most LRSs were Learning Management
Systems (LMSs); however this document uses the term LRS to be clear that a full LMS is not necessary
to implement the xAPI. The xAPI is dependent on an LRS to function.

Three levels of obligation with regards to conformance to the xAPI specification. A system that fails to
implement a MUST (or a MUST NOT) requirement is non-conformant. Failing to meet a SHOULD
requirement is not a violation of conformity, but goes against best practices. MAY indicates an option, to
be decided by the developer with no consequences for conformity.

A construct where information about the learner or activity is kept, typically in name/document pairs that

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 6

A

\.

e Trstbet

Registration

Representational State
Transfer (REST)

Service

Statement

Tin Can API (TCAPI)

Verb

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01)

ExXPERIENCE v1.0.1

have meaning to an instructional system component.
An instance of a learner experiencing a particular Activity.

An architecture for designing networked web Services. It relies on HTTP methods and uses current web
best practices.

A software component responsible for one or more aspects of the distributed learning process. An LMS
typically combines many services to design a complete learning experience.

A simple construct consisting of <Actor (learner)> <verb> <object>, with <result>,in
<context> to track an aspect of a learning experience. A set of several Statements may be used to
track complete details about a learning experience.

The previous name of the API defined in this document, often used in informal references to the
Experience API.

Defines the action being done by the Actor within the Activity within a Statement.

4.0 STATEMENT

ExXPERIENCE v1.0.1

The Statement is the core of the xAPI. All learning events are stored as Statements. A Statement is
akin to a sentence of the form "I did this".

Statement Properties

Details The details of each property of a statement are described in the table below.

Property Type Description

id UuID UUID assigned by LRS if not set by the Activity
Provider.

actor Object Who the Statement is about, as an Agent or Group
Object. Represents the "I" in "I Did This".

verb Object Action of the Learner or Team Object. Represents
the "Did" in "I Did This".

object Object Activity, Agent, or another Statement that is the
Object of the Statement. Represents the "This" in "l
Did This". Note that Objects which are provided as a
value for this field should include an "objectType"
field. If not specified, the Object is assumed to be an
Activity.

result Object Result Object, further details representing a
measured outcome relevant to the specified Verb.

context Object Context that gives the Statement more meaning.
Examples: a team the Actor is working with, altitude
at which a scenario was attempted in a flight
simulator.

timestamp Date/Time Timestamp (Formatted according to ISO 8601) of
when the events described within this Statement
occurred. If not provided, LRS should set this to the
value of "stored" time.

stored Date/Time Timestamp (Formatted according to ISO 8601) of
when this Statement was recorded. Set by LRS.

authority Object Agent who is asserting this Statement is true. Verified
by the LRS based on authentication, and set by LRS
if left blank.

version Version The Statement’s associated xAPI version, formatted
according to Semantic Versioning 1.0.0

attachments Array of Headers for attachments to the Statement.

attachment
Objects

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01)

Required

Recommended

Required

Required

Required

Optional

Optional

Optional

Set by LRS

Optional

Not
Recommended

Optional

https://en.wikipedia.org/wiki/ISO_8601#Combined_date_and_time_representations
https://en.wikipedia.org/wiki/ISO_8601#Combined_date_and_time_representations
http://semver.org/spec/v1.0.0.html

Requirements

Example

ExXPERIENCE v1.0.1

Aside from (potential or required) assignments of properties during LRS processing ("id", "authority",
"stored"”, "timestamp", "version") Statements are immutable. Note that the content of Activities that are
referenced in Statements is not considered part of the Statement itself. So while the Statement is
immutable, the Activities referenced by that Statement are not. This means a deep serialization of a
Statement into JSON will change if the referenced Activities change (see the Statement API's "format”

parameter for details).

* A Statement MUST use each property no more than one time.
+ A Statement MUST use “actor”, “verb”, and “object”.
+ A Statement MAY use its properties in any order.

An example of the simplest possible Statement using all properties that MUST or SHOULD be used:
{
"id": "12345678-1234-5678-1234-567812345678",
"actor":{
"mbox" :"mailto:xapi@adlnet.gov"
¥
"verb":{
"id":"http://adlnet.gov/expapi/verbs/created",
"display":{
"en-US":"created"
}
¥

"object":{
"id":"http://example.adlnet.gov/xapi/example/activity"
}

See Appendix C: Example Statements for more examples.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 9

Description

Requirements

Description

Description

Details

ExXPERIENCE v1.0.1

ID

A UUID (see RFC 4122 for requirements, and the UUID must be in a standard string form).

» |lds MUST be generated by the LRS if a Statement is received without an id.
* |lds SHOULD be generated by the Activity Provider.

Actor

A mandatory Agent or Group Object.

When the Actor ObjectType is Agent

An Agent (an individual) is a persona or system.

* An Agent MUST be identified by one (1) of the four types of Inverse Functional Identifiers (see
4.1.2.3 Inverse Functional Identifier).

* An Agent MUST NOT include more than one (1) Inverse Functional Identifier.

* An Agent SHOULD NOT use Inverse Functional Identifiers that are also used as a Group identifier.

The table below lists the properties of Agent Objects.

Property Type Description Required
objectType String "Agent". This property is optional except when no
the Agent is used as a Statement's Object.
name String Full name of the Agent. no
see 4.1.2.3 Inverse Functional Identifier ﬁn Inverse Functional Identifier unique to the yes
gent.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 10

http://www.ietf.org/rfc/rfc4122.txt

Description

Details

Requirements

Requirements for
Anonymous
Groups

Requirements for
Identified
Groups

When the Actor ObjectType is Group

ExXPERIENCE v1.0.1

A Group represents a collection of Agents and can be used in most of the same situations an Agent

can be used. There are two types of Groups, anonymous and identified.

An Anonymous Group is used describe a cluster of people where there is no ready identifier for this

cluster, e.g. an ad hoc team.

The table below lists all properties of an Anonymous Group.

Property Type Description Required
objectType String "Group". yes
name String Name of the group. no
member Array of Agent Objects The members of this Group. yes

An Ildentified Group is used to uniquely identify a cluster of Agents.

The table below lists all properties of an Identified Group.
Property Type Description Required
objectType String "Group". yes
name String Name of the group. no
member Array of Agent Objects The members of this Group. no
see 4.1.2.3 Inverse Functional Identifier An Inverse Functional Identifier unique to the Group. yes

+ A system consuming Statements MUST consider each anonymous Group distinct even if it has an

identical set of members.

» A system consuming Statements MUST NOT assume that Agents in the 'member’ property
comprise an exact list of Agents in a given anonymous or identified Group.

* Ananonymous Group MUST include a 'member’ property listing constituent Agents.
* Ananonymous Group MUST NOT contain Group Objects in the ‘'member' property.
* Ananonymous Group MUST NOT include any Inverse Functional Identifiers.

* Anidentified Group MUST include exactly one (1) Inverse Functional Identifier.
* Anidentified Group MUST NOT contain Group Objects in the 'member’ property.
* Anidentified Group SHOULD NOT use Inverse Functional Identifiers that are also used as Agent

identifiers.

* Anidentified Group MAY include a 'member' property listing constituent Agents.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01)

11

Inverse Functional Identifier

Description An "Inverse Functional Identifier" is a value of an Agent or Identified Group that is guaranteed to only

ExXPERIENCE v1.0.1

ever refer to that Agent or Identified Group.

Rationale Learning experiences become meaningless if they cannot be attributed to identifiable individuals
and/or groups. In an xAPI Statement this is accomplished with a set of Inverse Functional Identifiers
loosely inspired on the widely accepted FOAF principle (see: Friend Of A Friend).

Details The table below lists all possible Inverse Functional Identifier properties:
Property Type Description
mbox mailto IRI The required format is "mailto:email address".

mbox_shalsum

openiD

account

String

URI

Object

Only email addresses that have only ever been and will ever be
assigned to this Agent, but no others, should be used for this
property and mbox_shalsum.

The SHAL hash of a mailto IRI (i.e. the value of an mbox property).
An LRS MAY include Agents with a matching hash when a request
is based on an mbox.

An openlD that uniquely identifies the Agent.

A user account on an existing system e.g. an LMS or intranet.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01)

12

http://xmlns.com/foaf/spec/#term_Agent

ExXPERIENCE v1.0.1

Account Object

Description A user account on an existing system, such as a private system (LMS or intranet) or a public system
(social networking site).

Details » If the system that provides the account Object uses OpenlD, the Activity Provider SHOULD use
the OpenlID property instead of an account Object.
» If the Activity Provider is concerned about revealing personally identifiable information about an
Agent or Group, it SHOULD use an opaque account name (for example an account number) to
identify all statements about a person while maintaining anonymity.

The table below lists all properties of Account Objects.

Property Type Description

homePage IRL The canonical home page for the system the account is on. This is based on
FOAF's accountServiceHomePage.

name String The unique id or name used to log in to this account. This is based on
FOAF's accountName.

Example This example shows an Agent identified by an opaque account:

{
"objectType": "Agent",
"account": {
"homePage": "http://www.example.com"”,
"name": "1625378"
}
}

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 13

ExXPERIENCE v1.0.1

Verb
Description The Verb defines the action between Actor and Activity.
Rationale The Verb in an xAPI Statement describes the action performed during the learning experience. The

XAPI does not specify any particular Verbs. (With one exception, namely the reserved Verb
'http://adinet.gov/expapi/verbs/voided"). Instead, it defines how to create Verbs so that communities of
practice can establish Verbs meaningful to their members and make them available for use by
anyone. A predefined list of Verbs would be limited by definition and might not be able to effectively
capture all possible future learning experiences.

Details Verbs appear in Statements as Objects consisting of an IRl and a set of display names corresponding
to the multiple languages or dialects which provide human-readable meanings of the Verb.

The table below lists all properties of the Verb Object.
Property Type Description

Id IRI Corresponds to a Verb definition. Each Verb definition corresponds
to the meaning of a Verb, not the word. The IRI should be human-
readable and imply the Verb meaning.

display Language Map The human readable representation of the Verb in one or more
languages. This does not have any impact on the meaning of the
Statement, but serves to give a human-readable display of the
meaning already determined by the chosen Verb.

Requirements * The display property MUST be used to illustrate the meaning which is already determined by the
Verb IRI.

+ A system reading a Statement MUST use the Verb IRI to infer meaning.

* The display property MUST NOT be used to alter the meaning of a Verb.

+ A system reading a Statement MUST NOT use the display property to infer any meaning from the
Statement.

+ A system reading a Statement MUST NOT use the display property for any purpose other than
display to a human. Using the display property for aggregation or categorization of Statements is
an example of violating this requirement.

* The display property SHOULD be used by all Statements.

* The IRI contained in the id SHOULD be human-readable and imply the Verb meaning.

{
Example "verb" : {
"id":"http://www.adlnet.gov/XAPIprofile/ran(travelled_a_distance)",
"display":{
"en-US":"ran",
"es" : "corrio"
}
}
}

The Verb in the example above is included for illustrative purposes only. This is not intended to imply
that a Verb with this meaning has been defined with this id. This applies to all example Verbs given in
this specification document, with the exception of the reserved Verb
'http://adlnet.gov/expapi/verbs/voided'.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 14

http://adlnet.gov/expapi/verbs/voided
http://adlnet.gov/expapi/verbs/voided

ExXPERIENCE v1.0.1

Use in Language and Semantics of Verbs

Details
Semantics The IRI represented by the Verb id identifies the particular semantics of a word, not the word itself.

For example, the English word "fired" could mean different things depending on context, such as "fired
a weapon", "fired a kiln", or "fired an employee". In this case, an IRI MUST identify one of these

specific meanings, not the word "“fired".

The display property has some flexibility in tense. While the Verb IRIs are expected to remain in the
past tense, if conjugating verbs to another tense (using the same Verb) within the Activity makes
sense, it is allowed.

Language A \Verb in the Experience APl is an IRI, and denotes a specific meaning not tied to any particular
language.

For example, a particular Verb IRl such as http://example.org/firearms#fire might denote the
action of firing a gun, or the Verb IRl http://example.com/ =3/ 451 +5 might denote the action of
reading a book.

Use in Communities of Practice

Description Communities of practice will, at some point in time, need to establish new Verbs to meet the needs of
their constituency.

It is expected that xAPI generates profiles, lists, and repositories that become centered on Verb
vocabularies. ADL is one such organization that is creating a companion document containing Verbs
for XAPI.

In fulfillment of the requirements below, a collection of IRIs of recommended Verbs exists. There are
times when Activity Providers may wish to use a different Verb for the same meaning.

Requirements for + Anyone establishing a new Verb MUST own the IRI, or MUST have permission from the owner to

Communities of use it to denote an xAPI verb.

Practice * Anyone establishing a new Verb SHOULD make a human-readable description of the intended
usage of the verb accessible at the IRI.

Requirements for « Activity Providers SHOULD use a corresponding existing Verb whenever possible.
Activity « Activity Providers MAY create and use a Verb if no suitable Verb exists.
Providers

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 15

Description

Details

Details

Note

ExXPERIENCE v1.0.1

Object

The Object of a Statement can be an Activity, Agent/Group, Sub-Statement, or Statement Reference.
It is the "this" part of the Statement, i.e., "l did this".

Some examples:

* The object is an Activity: "Jeff wrote an essay about hiking."

* The Object is an Agent: "Nellie interviewed Jeff."

* The Object is Sub-Statement or Statement Reference (different implementations, but similar when
human-read): "Nellie commented on 'Jeff wrote an essay about hiking.' "

Objects which are provided as a value for this field SHOULD include an "objectType" field. If not
specified, the objectType is assumed to be "Activity". Other valid values are: Agent, Group, Sub-
Statement or StatementRef. The properties of an Object change according to the objectType.

When the ObjectType is Activity

A Statement may represent an Activity as the Object of the Statement.

The following table lists the Object properties in this case.

Property Type Description

objectType String MUST be "Activity" when present. Optional in all cases.
id IRI An identifier for a single unique Activity. Required.
definition Object Optional Metadata, See below

If it were possible to use the same id for two different Activities, the validity of Statements about these
Activities could be questioned. This means an LRS may never treat (references to) the same Activity
id as belonging to two different Activities, even if it thinks this was intended. Namely, when a conflict
with another system occurs, it's not possible to determine the intentions.

The table below lists the properties of the Activity Definition Object:

Property Type Use Description
name Language Map Recommended The human readable/visual name of the Activity.

description Language Map Recommended A description of the Activity.
type IRL Recommended The type of Activity.

morelnfo IL Optional SHOULD resolve to a document human-readable
information about the Activity, which MAY include a
way to ‘launch’ the Activity.

Interaction properties, See: Interaction Activities

extensions Object Optional A map of other properties as needed (see: Extensions)

IRI fragments (sometimes called relative IRLs) are not valid IRIs. As with Verbs, it is recommended
that Activity Providers look for and use established, widely adopted, Activity types.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 16

Activity ID
Requirements

LRS
Requirements

Activity Provider
Requirements

Metadata
Requirements

ExXPERIENCE v1.0.1

An Activity id MUST be unique.

An Activity id MUST always reference the same Activity.

An Activity id SHOULD use a domain that the creator is authorized to use for this purpose.

An Activity id SHOULD be created according to a scheme that makes sure all Activity ids within
that domain remain unique.

An Activity id MAY point to metadata or the IRL for the Activity.

An LRS MUST ignore any information which indicates two authors or organizations may have
used the same Activity id.

An LRS MUST NOT treat references to the same id as references to different Activities.

Upon receiving a Statement with an Activity Definition that differs from the one stored, an LRS
SHOULD decide whether it considers the Activity Provider to have the authority to change the
definition and SHOULD update the stored Activity Definition accordingly if that decision is positive.
An LRS MAY accept small corrections to the Activity’s definition. For example, it would be okay
for an LRS to accept spelling fixes, but it may not accept changes to correct responses.

An Activity Provider MUST ensure that Activity ids are not re-used across multiple Activities.

An Activity Provider MUST only generate states or Statements against a certain Activity id that are
compatible and consistent with states or Statements previously stored against the same id.

An Activity Provider MUST NOT allow new versions (i.e., revisions or other platforms) of the
Activity to break compatibility.

If an Activity IRl is an IRL, an LRS SHOULD attempt to GET that IRL, and include in HTTP
headers: "Accept: application/json, /". This SHOULD be done as soon as practical after the LRS
first encounters the Activity id.

Upon loading JSON which is a valid Activity Definition from an IRL used as an Activity id, an LRS
SHOULD incorporate the loaded definition into its internal definition for that Activity, while
preserving names or definitions not included in the loaded definition.

An Activity with an IRL identifier MAY host metadata using the Activity Definition JSON format
which is used in Statements, with a Content-Type of "application/json"

Upon loading any document from which the LRS can parse an Activity Definition from an IRL used
as an Activity id, an LRS MAY consider this definition when determining its internal representation
of that Activity's definition.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 17

Interaction Activities

ExXPERIENCE v1.0.1

Rationale Traditional e-learning has included structures for interactions or assessments. As a way to allow these

practices and structures to extend Experience API's utility, this specification includes built-in
definitions for interactions, which borrows from the SCORM 2004 4th Edition Data Model. These
definitions are intended to provide a simple and familiar utility for recording interaction data. These
definitions are simple to use, and consequently limited. It is expected that communities of practice
requiring richer interactions definitions will do so through the use of extensions to an Activity's type
and definition.

Details The table below lists the properties for Interaction Activities.
Property Type Description
interactionType String As in "cmi.interactions.n.type" as defined in the SCORM

2004 4th Edition Run-Time Environment.

correctResponsesPattern An array of strings Corresponds to
"cmi.interactions.n.correct_responses.n.pattern” as
defined in the SCORM 2004 4th Edition Run-Time
Environment, where the final n is the index of the array.

choices | scale | source | Array of interaction Specific to the given interactionType (see below).
target | steps components
Requirements * Interaction Activities MUST have a valid interactionType.

» Interaction Activities SHOULD have the Activity type
"http://adlnet.gov/expapi/activities/cmi.interaction”.

*+ AnLRS, upon consuming a valid interactionType, MAY validate the remaining properties as
specified in the table below and MAY return HTTP 400 "Bad Request" if the remaining properties
are not valid for the Interaction Activity.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01)

18

http://adlnet.gov/expapi/activities/cmi.interaction

ExXPERIENCE v1.0.1

Interaction Components

Details Interaction components are defined as follows:
Property Type Description
id String A value such a used in practice for "cmi.interactions.n.id" as defined in the

SCORM 2004 4th Edition Run-Time Environment

description Language A description of the interaction component (for example, the text for a given
Map choice in a multiple-choice interaction).

The following table shows the supported lists of CMI interaction components for an interaction activity
with the given interactionType.

interactionType supported component list(s)

choice, sequencing choices

likert scale

matching source, target

Performance steps

true-false, fill-in, numeric, other [no component lists defined]
Requirements » Within an array of all interaction components, all values MUST be distinct.

* Aninteraction component’s id value SHOULD not have whitespace.

See Appendix E for examples of Activity definitions for each of the cmi.interaction types.

When the "Object" is an Agent or a Group

Requirements + Statements that specify an Agent or Group as an Object MUST specify an 'objectType' property.

See Section 4.1.2 Actor for details regarding Agents.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 19

Rationale

Description

Requirements

Example

ExXPERIENCE v1.0.1

When the "Object" is a Statement

There are two possibilities for using a Statement as an Object. First, an Object can take on the form of
a Statement that already exists by using a Statement Reference. A common use case for Statement
References is grading or commenting on an experience that could be tracked as an independent
event. The special case of voiding a Statement would also use a Statement Reference. Second, an
Object can be a brand new Statement by using a Sub-Statement. A common use case for Sub-
Statements would be any experience that would be misleading as its own Statement. Each type is
defined below.

Statement References

A Statement Reference is a pointer to another pre-existing Statement.

+ A Statement Reference MUST specify an "objectType" property with the value "StatementRef".
+ A Statement Reference MUST set the "id" property to the UUID of a Statement.

The table below lists all properties of a Statement Reference Object:

Property Type Description
objectType String In this case, MUST be "StatementRef".
id uuID The UUID of a Statement.

Assuming that some Statement has already been stored with the ID 8f87ccde-bb56-4c2e-ab83-
44982ef22df0, the following example shows how a comment could be issued on the original
Statement, using a hew Statement:

{
"actor" : {
"objectType": "Agent",
"mbox":"mailto:test@example.com"
s
"verb" : {
"id":"http://example.com/commented",
"display": {
"en-US":"commented"
¥
s
"object" : {
"objectType":"StatementRef",
"id":"8f87ccde-bb56-4c2e-ab83-44982ef22df0"
s
"result" : {
"response"” : "Wow, nice work!"
}
}

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 20

ExXPERIENCE v1.0.1

Sub-Statements

Description A Sub-Statement is a new Statement included as part of a parent Statement.

Requirements * A Sub-Statement MUST specify an "objectType" property with the value "SubStatement".
+ A Sub-Statement MUST be validated as a Statement in addition to other Sub-Statement
requirements.
* A Sub-Statement MUST NOT have the "id", "stored", "version" or "authority" properties.
* A Sub-Statement MUST NOT contain a Sub-Statement of their own, i.e., cannot be nested.

Example One interesting use of Sub-Statements is in creating Statements of intention. For example, using Sub-
Statements we can create statements of the form "<I> <planned> (<I> <did> <this>)" to indicate
that we've planned to take some action. The concrete example that follows logically states that

"l planned to visit 'Some Awesome Website™.

{

"actor": {
"objectType": "Agent",
"mbox":"mailto:test@example.com"
s
"verb" : {
"id":"http://example.com/planned”,
"display":{
"en-US":"planned"

b
3
"object": {
"objectType": "SubStatement",
"actor" : {
"objectType": "Agent",
"mbox":"mailto:test@example.com"
s
"verb" : {
"id":"http://example.com/visited",
"display":{
"en-US":"will visit"

}
¥
"object": {
"id":"http://example.com/website",
"definition": {
"name" : {
"en-US":"Some Awesome Website"

}

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 21

ExXPERIENCE v1.0.1

Result
Description An optional field that represents a measured outcome related to the Statement in which it is included.
Details The following table contains the properties of the Results Object.
Property Type Description
score Object The score of the agent in relation to the success or quality of
the experience. See: Score
success Boolean Indicates whether or not the attempt on the Activity was
successful.
completion Boolean Indicates whether or not the Activity was completed.
response String A response appropriately formatted for the given Activity.
duration Formatted accordingto Period of time over which the Statement occurred.
ISO 8601 with a
precision of 0.01
seconds
extensions Object A map of other properties as needed. See: Extensions
Score
Description An optional numeric field that represents the outcome of a graded Activity achieved by an Agent.
Details The table below defines the Score Obiject.
Property Type Description
scaled Decimal number between -1 and 1, inclusive Cf. 'cmi.score.scaled' in SCORM 2004
4th Edition
raw Decimal number between min and max (if present, Cf. ‘cmi.score.raw'
otherwise unrestricted), inclusive
min Decimal number less than max (if present) Cf. ‘cmi.score.min’
max Decimal number greater than min (if present) Cf. ‘cmi.score.max'
Requirements * The Score Object SHOULD include 'scaled' if a logical percent based score is known.

* The Score Object SHOULD NOT be used for scores relating to progress or completion. Consider
using an extension from an extension profile instead.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 22

https://en.wikipedia.org/wiki/ISO_8601#Durations

ExXPERIENCE v1.0.1

Context

Description An optional field that provides a place to add contextual information to a Statement. All properties are
optional.

Rationale The "context" field provides a place to add some contextual information to a Statement. It can store

information such as the instructor for an experience, if this experience happened as part of a team
Activity, or how an experience fits into some broader activity.

Details The following table contains the properties of the Context Object.

Property

registration

instructor Agent (may be a group) Instructor that the Statement relates to, if not included as the
Actor of the statement.

team Group Team that this Statement relates to, if not included as the
Actor of the Statement.

contextActivities contextActivities Object A map of the types of learning activity context that this
Statement is related to. Valid context types are: "parent”,
"grouping"”, "category" and "other".

revision String Revision of the learning activity associated with this
Statement. Format is free.

platform String Platform used in the experience of this learning activity.

language String (as defined in Code representing the language in which the experience

RFC 5646) being recorded in this Statement (mainly) occurred in, if

applicable and known.

statement Statement Reference Another Statement which should be considered as context
for this Statement.

extensions Object A map of any other domain-specific context relevant to this
Statement. For example, in a flight simulator altitude,
airspeed, wind, attitude, GPS coordinates might all be
relevant (See Extensions)

Requirements * The revision property MUST only be used if the Statement's Object is an Activity.

Type

uuID

Description

The registration that the Statement is associated with.

* The platform property MUST only be used if the Statement's Object is an Activity.

* The language property MUST NOT be used if not applicable or unknown.

* The revision property SHOULD be used to track fixes of minor issues (like a spelling error).

+ The revision property SHOULD NOT be used if there is a major change in learning objectives,
pedagogy, or assets of an Activity. (Use a new Activity id instead).

Note Revision has no behavioral implications within the scope of XAPI. It is simply stored, so that it is
available for reporting tools.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01)

23

http://tools.ietf.org/html/rfc5646

Description

Details

Description

Rationale

Details

Note

Requirements

ExXPERIENCE v1.0.1

Registration Property

An instance of a learner undertaking a particular learning activity.

When an LRS is an integral part of an LMS, the LMS likely supports the concept of registration. The
Experience API applies the concept of registration more broadly. A registration could be considered to
be an attempt, a session, or could span multiple Activities. There is no expectation that completing an
Activity ends a registration. Nor is a registration necessarily confined to a single Agent.

ContextActivities Property

A map of the types of learning activity context that this Statement is related to.

Many Statements do not just involve one Object Activity that is the focus, but relate to other
contextually relevant Activities. "Context activities" allow for these related Activities to be represented
in a structured manner.

There are four valid context types. All, any or none of these MAY be used in a given Statement:

1. Parent: an Activity with a direct relation to the activity which is the Object of the Statement. In
almost all cases there is only one sensible parent or none, not multiple. For example: a
Statement about a quiz question would have the quiz as its parent Activity.

2. Grouping: an Activity with an indirect relation to the activity which is the Object of the
Statement. For example: a course that is part of a qualification. The course has several
classes. The course relates to a class as the parent, the qualification relates to the class as
the grouping.

3. Category: an Activity used to categorize the Statement. "Tags" would be a synonym.
Category SHOULD be used to indicate a "profile" of xAPI behaviors, as well as other
categorizations. For example: Anna attempts a biology exam, and the Statement is tracked
using the CMI-5 profile. The Statement's Activity refers to the exam, and the category is the
CMI-5 profile.

4. Other: a context Activity that doesn't fit one of the other fields. For example: Anna studies a
textbook for a biology exam. The Statement's Activity refers to the textbook, and the exam is
a context Activity of type "other".

Single Activity Objects are allowed as values so that 0.95 Statements will be compatible with 1.0.0.

The values in this section are not for expressing all the relationships the Statement Object has.
Instead, they are for expressing relationships appropriate for the specific Statement (though the
nature of the Object will often be important in determining that). For instance, it is appropriate in a
Statement about a test to include the course the test is part of as parent, but not to include every
possible degree program the course could be part of in the grouping value.

» Every key in the contextActivities Object MUST be one of parent, grouping, category, or other.

» Every value in the contextActivities Object MUST be either a single Activity object or an array of
Activity objects.

+ The LRS MUST return every value in the contextActivities Object as an array, even if it arrived as
a single Activity object;

+ The LRS MUST return single Activity Objects as an array of length one containing the same
Activity.

+ The Client SHOULD ensure that every value in the contextActivitiesOobject is an array of Activity
objects instead of a single Activity object.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 24

ExXPERIENCE v1.0.1

Example Consider the following hierarchical structure: "Questions 1 to 6" are part of "Test 1" which in turn
belongs to the course "Algebra 1". The six questions are registered as part of the test by declaring
"Test 1" as their parent. Also they are grouped with other Statements about "Algebra 1" to fully mirror
the hierarchy. This is particularly useful when the Object of the Statement is an Agent, not an Activity.
"Andrew mentored Ben with context Algebra 1".

{
"parent" : [{
"id" : "http://example.adlnet.gov/xapi/example/test 1"
1,
"grouping” : [{
"id" : "http://example.adlnet.gov/xapi/example/Algebral™
]

}

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 25

Description

Details

Requirements

Description

Requirements

ExXPERIENCE v1.0.1

Timestamp

The time at which the experience occurred.

A timestamp in a Statement can differ from Stored (the time at which the statement is stored).
Namely, there can be delays between the occurrence of the experience and the reception of the
corresponding Statement by the LRS.

Where the experience occurs over a period of time, the timestamp can represent the start, end or any
point of time during the experience. It is expected that communities of practice will define an
appropriate point to record the timestamp for different experiences. For example when recording the
experience of eating at a restaurant, it might be most appropriate to record the timestamp of the start
of the experience; when recording the experience of completing a qualification, it might be most
appropriate to record the timestamp of the end of the experience. These examples are for illustrative
purposes only and are not meant to be prescriptive.

+ Atimestamp MUST be formatted according to 1ISO 8601.

+ Atimestamp SHOULD include the time zone.

+ Atimestamp SHOULD be the current or a past time when it is outside of a Sub-Statement.

+ Atimestamp MAY be truncated or rounded to a precision of at least 3 decimal digits for seconds
(millisecond precision MUST be preserved).

+ Atimestamp MAY be a moment in the future, to denote a deadline for planned learning, provided
it is included inside a Sub-Statement.

Stored

The time at which a Statement is stored by the LRS.

The stored property is the literal time the Statement was stored. Use Timestamp to track a time at
which the Statement was generated.

* The stored property MUST be formatted according to ISO 8601.

* The stored property SHOULD include the time zone.

* The stored property SHOULD be the current or a past time.

* The stored property MAY be truncated or rounded to a precision of at least 3 decimal digits for
seconds (millisecond precision MUST be preserved).

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 26

https://en.wikipedia.org/wiki/ISO_8601#Combined_date_and_time_representations
https://en.wikipedia.org/wiki/ISO_8601#Combined_date_and_time_representations

ExXPERIENCE v1.0.1

Authority
Description The authority property provides information about whom or what has asserted that this Statement is
true.
Details The asserting authority represents the authenticating user of some system or application.
Requirements » Authority MUST be an Agent, except in 3-legged OAuth, where it must be a Group with two

Agents. The two Agents represent an application and user together.

+ The LRS MUST include the user as an Agent as the entire authority if the user connects directly
(using HTTP Basic Authentication) or is included as part of a Group.

* The LRS MUST ensure that all Statements stored have an authority.

+ The LRS SHOULD overwrite the authority on all stored received Statements, based on the
credentials used to send those Statements.

* The LRS MAY leave the submitted authority unchanged but SHOULD do so only where a strong
trust relationship has been established, and with extreme caution.

+ The LRS MAY identify the user with any of the legal identifying properties if a user connects
directly (using HTTP Basic Authentication) or a part of a 3-legged OAuth.

OAuth Credentials as Authority

Description This is a workflow for use of OAuth. 2-legged and 3-legged OAuth are both supported.

Details This workflow assumes a Statement is stored using a validated OAuth connection and the LRS
creates or modifies the authority property of the Statement.

In a 3-legged OAuth workflow, authentication involves both and OAuth consumer and a user of the
OAuth service provider. For instance, requests made by an authorized Twitter plug-in on their
Facebook account will include credentials that are specific not only to Twitter as a Client application,
or them as a user, but the unige combination of both.

Requirements * The authority MUST contain an Agent Object that represents the OAuth consumer, either by itself,
or as part of a group in the case of 3-legged OAuth.

» The Agent representing the OAuth consumer MUST be identified by account.

» The Agent representing the OAuth consumer MUST use the consumer key as the “account name”
field.

+ If the Agent representing the OAuth consumer is a registered application, the token request
endpoint MUST be used as the account homePage.

+ If the Agent representing the OAuth consumer is not a registered application, the temporary
credentials endpoint MUST be used as the account homePage.

« An LRS MUST NOT trust the application portion of the authority in the event the account name is
from the same source as the unregistered application. (Multiple unregistered applications could
choose the same consumer key. As a result, there is no consistent way to verify this combination
of temporary credentials and the account name.)

» Each unregistered consumer SHOULD use a unigue consumer key.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 27

ExXPERIENCE v1.0.1

Example The pairing of an OAuth consumer and a user.

"authority": {

"objectType" : "Group",
"member": [
{

"account": {
"homePage" : "http://example.com/xAPI/OAuth/Token",

"name" : "oauth_consumer_x75db"

}

bs

{
"mbox":"mailto:bob@example.com”

}

1
}
Version
Description Version information in Statements helps systems that process data from an LRS get their bearings.

Since the Statement data model is guaranteed consistent through all 1.0.x versions, in order to
support data flow among such LRSs the LRS is given some flexibility on Statement versions that are

accepted.
Requirements * Version MUST be formatted as laid out for the API version header in API Versioning.
LRS *+ An LRS MUST accept all Statements where their version starts with "1.0." if they otherwise
Requirements validate.

* An LRS MUST reject all Statements with a version specified that does not start with "1.0."
+ Statements returned by an LRS MUST retain the version they are accepted with. If they lack a
version, the version MUST be set to 1.0.0

Client + If Clients set the Statement version, they MUST set it to 1.0.0
Requirements * Clients SHOULD NOT set the Statement version.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 28

Description

Rationale

Details

Procedure for
the exchange of
attachments

Requirements for
Attachment
Statement
Batches

ExXPERIENCE v1.0.1

Attachments

A digital artifact providing evidence of a learning experience.

In some cases an attachment may logically be an important part of a learning record. Think of a
simulated communication with ATC, an essay, a video, etc. Another example of such an attachment is
(the image of) a certificate that was granted as a result of an experience. It is useful to have a way to
store these attachments in and retrieve them from an LRS. In the case of wanting to include an
attachment(s) for a Sub-Statement, we strongly recommend including the attachment(s) in the
Statement attachment field and including the payloads as you would normally for a Statement.

The table below lists all properties of the Attachment Object.

Property Type Description Required

usageType IRI Identifies the usage of this attachment. For example: yes
one expected use case for attachments is to include a
"completion certificate". A type IRI corresponding to
this usage should be coined, and used with completion
certificate attachments.

display Language Map Display name (title) of this attachment. yes

description Language Map A description of the attachment. no

contentType Internet Media The content type of the attachment. yes
Type

length integer The length of the attachment data in octets. yes

sha2 String The SHA-2 (SHA-256, SHA-384, SHA-512) hash of the yes

attachment data. SHA-224 SHOULD not be used: a
minimum key size of 256 bits is recommended.

fileUrl IRL An IRL at which the attachment data may be retrieved, no
or from which it used to be retrievable.

1. A Statement including an attachment is construed according to the Transmission Format
described below.

2. The Statement is sent to the receiving system using a content-Type of "multipart/mixed". The
attachments are placed at the end of such transmissions.

3. The receiving system decides whether to accept or reject the Statement based on the information
in the first part.

4. |If it accepts the attachment, it can match the raw data of an attachment with the attachment
header in a Statement by comparing the SHA-2 of the raw data to the SHA-2 declared in the
header. It MUST not do so in any other way.

A Statement batch, Statement results, or a single Statement that includes attachments MUST satisfy
one of the following criteria:

+ It MUST be of type "application/json" and include a fileUrl for every attachment EXCEPT for
Statement results when the attachment filter is false.
* It MUST conform to the definition of multipart/mixed in RFC 1341 and:
o The first part of the multipart document MUST contain the Statements themselves, with
type "application/json".
o [Each additional part contains the raw data for an attachment and forms a logical part of
the Statement. This capability will be available when issuing PUT or POST against the
Statement resource.
o MUST include an X-Experience-API-Hash field in each part's header after the first

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 29

https://www.ietf.org/rfc/rfc2046.txt?number=2046
https://www.ietf.org/rfc/rfc2046.txt?number=2046

LRS
Requirements

Note

Client
Requirements

Example

ExXPERIENCE v1.0.1

(Statements) part.

o This field MUST be set to match the "sha2" property of the attachment declaration
corresponding to the attachment included in this part.

o MUST include a Content-Transfer-Encoding field with a value of "binary" in each part's
header after the first (Statements) part.

o SHOULD only include one copy of an attachment's data when the same attachment is
used in multiple Statements that are sent together.

o SHOULD include a Content-type field in each part's header, for the first part this MUST be
"application/json".

* An LRS MUST include attachments in the Transmission Format described above when requested
by the Client (see Section 7.2 "Statement API").

* An LRS MUST NOT pull Statements from another LRS without requesting attachments.

* An LRS MUST NOT push Statements into another LRS without including attachment data
received, if any, for those attachments.

« When receiving a PUT or POST with a document type of "application/json", an LRS MUST accept
batches of Statements which contain no attachment Objects.

+ When receiving a PUT or POST with a document type of "application/json”, an LRS MUST accept
batches of Statements which contain only attachment Objects with a populated fileURL.

* When receiving a PUT or POST with a document type of "multipart/mixed”, an LRS MUST accept
batches of Statements that contain attachments in the Transmission Format described above.

* When receiving a PUT or POST with a document type of "multipart/mixed”, an LRS MUST reject
batches of Statements having attachments that neither contain a fileUrl nor match a received
attachment part based on their hash.

* When receiving a PUT or POST with a document type of "multipart/mixed”, an LRS SHOULD assume
a Content-Transfer-Encoding of binary for attachment parts.

* An LRS MAY reject (batches of) Statements that are larger than the LRS is configured to allow.

There is no requirement that Statement batches using the mime/multipart format contain attachments.

+ The Client MAY send Statements with attachments as described above.

+ The Client MAY send multiple Statements where some or all have attachments if using "POST".

* The Client MAY send batches of type "application/json" where every attachment Object has a
fileUrl, ignoring all requirements based on the "multipart/mixed" format.

Below is an example of a very simple Statement with an attachment. Please note the following:

» The boundary in the sample was chosen to demonstrate valid character classes;

* The selected boundary does not appear in any of the parts;

» For readability the sample attachment is text/plain. Even if it had been a 'binary' type like
‘image/jpeg’' no encoding would be done, the raw octets would be included;

* Per RFC 1341, the boundary is followed by -- followed by the boundary string declared in the
header.

Don't forget the <CRLF> when building or parsing these messages.

Headers:
Content-Type: multipart/mixed; boundary=abcABC0123'()+_,-./:=?

X-Experience-API-Version:1.0.0
Content:

--abcABCO123'()+_,-./:=?
Content-Type:application/json

{

"actor": {
"mbox": "mailto:sample.agent@example.com",

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 30

ExXPERIENCE v1.0.1

"name": "Sample Agent",
"objectType": "Agent"
s
"verb": {
"id": "http://adlnet.gov/expapi/verbs/answered",
"display": {
"en-US": "answered"

}
}s
"object": {
"id": "http://www.example.com/tincan/activities/multipart”,
"objectType": "Activity",
"definition": {
"name": {
"en-US": "Multi Part Activity"
s
"description": {
"en-US": "Multi Part Activity Description”
}

}
}s
"attachments": [
{
"usageType": "http://example.com/attachment-usage/test",
"display": { "en-US": "A test attachment" },
"description": { "en-US": "A test attachment (description)" },
"contentType": "text/plain; charset=ascii”,
"length": 27,
"sha2":
"495395e777cd98da653df9615d09c0fd6bb2f8d4788394cd53c56a3bfdcd848a"
}
]
}

--abcABCO123' ()+_,-./:=?

Content-Type:text/plain

Content-Transfer-Encoding:binary

X-Experience-API-
Hash:495395e777cd98da653df9615d09c0fd6bb2f8d4788394cd53c56a3bfdcd848a

here is a simple attachment
--abcABCO123' ()+_,-./:=?--

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 31

Details

Client

Requirements

LRS
Requirements

ExXPERIENCE v1.0.1

Data Constraints

All the properties used in Statements are restricted to certain types, and those types constrain the
behavior of systems processing Statements. For clarity, certain key requirements are documented
here, emphasizing where compliant systems have a responsibility to act in certain ways.

The following requirements reiterate especially important requirements already included elsewhere, to
emphasize, clarify, and provide implementation guidance. Complete IRI validation is extremely
difficult, so much of the burden for ensuring data portability is on the Client.

Values requiring IRIs MUST be sent with valid IRIs.
Keys of language maps MUST be sent with valid REC 5646 language tags, for similar reasons.
A library SHOULD be used to construct IRIs, as opposed to string concatenation.

The LRS MUST reject Statements

O

©]
©]
©]

(©]

(o]

with any null values (except inside extensions).

with strings where numbers are required, even if those strings contain numbers.

with strings where booleans are required, even if those strings contain booleans.

with any non-format-following key or value, including the empty string, where a string with
a particular format (such as mailto IRI, UUID, or IRI) is required.

where the case of a key does not match the case specified in the standard.

where the case of a value restricted to enumerated values does not match an
enumerated value given in the standard exactly.

The LRS MUST reject Statements containing IRL, IRI, or IRI values without a scheme.

The LRS MUST at least validate that the sequence of token lengths for language map keys
matches the RFC 5646 standard.

The LRS MUST process and store numbers with at least the precision of IEEE 754 32-bit floating
point numbers.

The LRS MUST validate parameter values to the same standards required for values of the same
types in Statements. Note: string parameter values are not quoted as they are in JSON.

The LRS MAY use best-effort validation for IRL, IRI, and IRI formats to satisfy the non-format-
following rejection requirement.

The LRS MAY use best-effort validation for language map keys to satisfy the non-format-following
rejection requirement.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 32

http://tools.ietf.org/html/rfc5646
http://tools.ietf.org/html/rfc5646

ExXPERIENCE v1.0.1

Retrieval of Statements

Description A collection of Statements can be retrieved by performing a query on the "statements" endpoint, see
Section 7.2 “Statement API” for details.

Details The following table shows the data structure for the results of queries on the Statement API.
Property Type Description
statements Array of List of Statements. If the list returned has been limited (due to pagination),

Statements and there are more results, they will be located at the "statements" property
within the container located at the IRL provided by the "more" element of this
Statement result Object.

more IRL Relative IRL that may be used to fetch more results, including the full path
and optionally a query string but excluding scheme, host, and port. Empty
string if there are no more results to fetch.

This IRL must be usable for at least 24 hours after it is returned by the LRS.
In order to avoid the need to store these IRLs and associated query data, an
LRS may include all necessary information within the IRL to continue the
query, but should avoid generating extremely long IRLs. The consumer
should not attempt to interpret any meaning from the IRL returned.

Requirements * The IRL retrieved from the more property MUST be usable for at least 24 hours after it is returned
by the LRS.
* An LRS MAY include all necessary information within the more property IRL to continue the query
to avoid the need to store IRLs and associated query data.
* An LRS SHOULD NOT generate extremely long IRLs within the more property.
* The consumer SHOULD NOT attempt to interpret any meaning from the IRL returned from the
more property.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 33

Rationale

Requirements

Note

Example

ExXPERIENCE v1.0.1

Voided

The certainty that an LRS has an accurate and complete collection of data is guaranteed by the fact
that Statements cannot be logically changed or deleted. This immutability of Statements is a key
factor in enabling the distributed nature of Experience API.

However, not all Statements are perpetually valid once they have been issued. Mistakes or other
factors could require that a previously made Statement is marked as invalid. This is called "voiding a
Statement" and the reserved Verb “http://adlnet.gov/expapi/verbs/voided" is used for this purpose.
Any Statement that voids another cannot itself be voided.

When issuing a Statement that voids another, the Object of that voiding statement MUST have
the “objectType” field set to “StatementRef”.

When issuing a Statement that voids another, the Object of that voiding statement MUST specify
the id of the statement-to-be-voided by its “id” field.

Upon receiving a statement that voids another, the LRS SHOULD reject the entire request which
includes the voiding statement with HTTP 403 ‘Forbidden’ if the request is not from a source
authorized to void Statements.

Upon receiving a statement that voids another, the LRS SHOULD return a descriptive error if the
target Statement cannot be found.

Upon receiving a statement that voids another, the LRS MAY roll back any changes to Activity or
Agent definitions which were introduced by the Statement that was just voided.

An Activity Provider that wants to “unvoid” a previously voided Statement SHOULD issue that
Statement again under a new id.

A reporting system SHOULD NOT show voided or voiding Statements by default.

See "Statement References" in section 4.1.4.3 When the "Object" is a Statement for details about
making references to other Statements. To see how voided statements behave when queried, see
StatementRef in 7.2 Statement API.

This example Statement voids a previous Statement which it identifies with the statement id
"e05aa883-acaf-40ad-bf54-02c8ce485fb0".

{& "actor" : {B "objectType": "Agent",E "name" : "Example Admin",®
"mbox" : "mailto:admin@example.adlnet.gov"[},0 "verb" : {&@
"id":"http://adlnet.gov/expapi/verbs/voided",R "display":{@ "en-
US":"voided"m 1@ },: "object" : {® "objectType":"StatementRef",H
"id" : "e@5aa883-acaf-40ad-bf54-02c8ce485fbo"m @}

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 34

http://adlnet.gov/expapi/verbs/voided

ExXPERIENCE v1.0.1

Signed Statements

Description A Statement may include a digital signature to provide strong and durable evidence of the authenticity
and integrity of the Statement.

Rationale Some Statements will have regulatory or legal significance, or otherwise require strong and durable
evidence of their authenticity and integrity. It may be necessary to verify these Statements without
trusting the system they were first recorded in, or perhaps without access to that system. Digital
signatures will enable a third-party system to validate such Statements.

Details Signed Statements include a JSON web signature (JWS) as an attachment. This allows the original
serialization of the Statement to be included along with the signature. For interoperability, the "RSA +
SHA" series of JWS algorithms have been selected, and for discoverability of the signer X.509
certificates SHOULD be used.

Requirements * A Signed Statement MUST include a JSON web signature (JWS) as defined here:
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature, as an attachment with a usageType of
"http://adlnet.gov/expapi/attachments/signature” and a contentType of "application/octet-stream"”.

+ The JWS signature MUST have a payload of a valid JSON serialization of the Statement
generated before the signature was added.
* The JWS signature MUST use an algorithm of "RS256","RS384", or "RS512".
+ The JWS signature SHOULD have been created based on the private key associated with an
X.509 certificate.
« If X.509 was used to sign, the JWS header SHOULD include the "x5c" property containing the
associated certificate chain.
*+ The LRS MUST reject requests to store Statements that contain malformed signatures, with HTTP
400.
*+ The LRS SHOULD include a message in the response of a rejected statement. In order to verify
signatures are well formed, the LRS MUST do the following:
o Decode the JWS signature, and load the signed serialization of the Statement from the JWS
signature payload.
o Validate that the "original" Statement is logically equivalent to the received Statement.
+ When making this equivalence check, differences which could have been caused by
allowed or required LRS processing of "id", "authority”, "stored", "timestamp", or "version"
MUST be ignored.
o Ifthe JWS header includes an X.509 certificate, validate the signature against that certificate
as defined in JWS.
+ Clients MUST NOT assume a signhature is valid simply because an LRS has accepted it.

Note The step of validating against the included X.509 certificate is intended as a way to catch mistakes in
the signature, not as a security measure. Clients MUST NOT assume a signature is valid simply
because an LRS has accepted it. The steps to authenticate a Signed Statement will vary based on the
degree of certainty required and are outside the scope of this specification.

Example See Appendix G: Example Signed Statement for an example..

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 35

https://en.wikipedia.org/wiki/Digital_signature
http://tools.ietf.org/html/draft-ietf-jose-json-web-signature
http://adlnet.gov/expapi/attachments/signature

ExXPERIENCE v1.0.1

5.0 MISCELLANEOUS TYPES

Document

Description The Experience API provides a facility for Activity Providers to save arbitrary data in the form of
documents, which may be related to an Activity, Agent, or combination of both.

Details Note that the following table shows generic properties, not a JSON Object as many other tables in this
specification do. The id is stored in the IRL, "updated" is HTTP header information, and "contents" is
the HTTP document itself (as opposed to an Object).

Property Type Description

id String Set by AP, unique within the scope of the agent or activity.
updated Timestamp When the document was most recently modified.

contents Arbitrary binary data The contents of the document.

Language Map

Description A language map is a dictionary where the key is an RFC 5646 Language Tag, and the value is a
string in the language specified in the tag. This map should be populated as fully as possible based
on the knowledge of the string in question in different languages.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 36

http://tools.ietf.org/html/rfc5646

Description

Details

Requirements

Note

ExXPERIENCE v1.0.1

Extensions

Extensions are available as part of Activity Definitions, as part of statement context, or as part of
some statement result. In each case, they're intended to provide a natural way to extend those
elements for some specialized use. The contents of these extensions might be something valuable to
just one application, or it might be a convention used by an entire community of practice.

Extensions are defined by a map and logically relate to the part of the Statement where they are
present. The values of an extension can be any JSON value or data structure. Extensions in
Statement context provide context to the core experience, while those in the result provide elements
related to some outcome. For Activities, extensions provide additional information that helps define an
Activity within some custom application or community. The meaning and structure of extension values
under an IRI key are defined by the person who controls the IRI.

* The keys of an extensions map MUST be IRIs.

+ An LRS MUST NOT reject a Statement based on the values of the extensions map.

* Clients SHOULD always strive to map as much information as possible into the built-in elements in
order to leverage interoperability among Experience APl conformant tools.

» All extension IRIs SHOULD have controllers.

* The controller of an IRL extension key SHOULD make a human-readable description of the
intended meaning of the extension supported by the IRL accessible at the IRL.

A Statement defined entirely by its extensions becomes meaningless as no other system can make
sense of it.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 37

Description

Details

Requirements

ExXPERIENCE v1.0.1

Identifier Metadata

Additional information can be provided within a Statement about an identifier. This allows metadata
about the IRI to be expressed without the necessity of resolving it.

There are several types of IRI identifiers used in this specification:

. Verb
. Activity id

. Activity type
. extension key
. attachment usage type

For supplying metadata about Activity ids, see Activity Definition Object.

For supplying metadata about all other identifiers, see the format below.:

Property Type Description
name Language Map The human readable/visual name
description Language Map Description

If this metadata is provided as described above, it is the canonical source of information about the
identifier it describes. As with Verbs, we recommend that Activity Providers look for and use
established, widely adopted identifiers for all types of IRI identifier other than Activity id.

. Metadata MAY be provided with an identifier.

. If metadata is provided, both name and description SHOULD be included.

. For any of the identifier IRIs above, if the IRl is an IRL that was coined for use with this
specification, the controller of that IRL SHOULD make this JSON metadata available at that IRL
when the IRL is requested and a Content-Type of "application/json" is requested.

. Where an identifier already exists, the Activity Provider SHOULD use the corresponding existing
identifier.

. The Activity Provider MAY create and use their own Verbs where a suitable identifier does not
already exist.

. Other sources of information MAY be used to fill in missing details, such as translations, or take
the place of this metadata entirely if it was not provided or cannot be loaded. This MAY include
metadata in other formats stored at the IRL of an identifier, particularly if that identifier was not
coined for use with this specification.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 38

ExXPERIENCE v1.0.1

6.0 RUNTIME COMMUNICATION

Sections 6 and 7 detail the more technical side of the Experience API, dealing with how Statements
are transferred between Activity Provider and LRS. A number of libraries are under development for a
range of technologies (including JavaScript) which handle this part of the specification. It therefore
may not be necessary for content developers to fully understand every detail of this part of the
specification.

Encoding

Requirement » All strings must be encoded and interpreted as UTF-8.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 39

Rationale

Details

LRS
Requirements

Client

Requirements

Conversion
Requirements

ExXPERIENCE v1.0.1

API Versioning

Future revisions of the specification may introduce changes such as properties added to Statements.
Systems retrieving statements may then receive responses that include statements of different
versions. The version header allows for these version differences to be handled correctly, and to
ascertain that no partial or mixed LRS version implementations exist.

Using Semantic Versioning will allow Clients and LRSs to reliably know whether they're compatible or
not as the specification changes.

Starting with 1.0.0, XAPI will be versioned according to Semantic Versioning 1.0.0.

Every request from a Client and every response from the LRS must include an HTTP header with the
name “X-Experience-API-Version” and the version as the value. Example: X-Experience-API-
Version : 1.0.1

* The LRS MUST include the "X-Experience-API-Version" header in every response.

*+ The LRS MUST set this header to "1.0.1".

*+ The LRS MUST accept requests with a version header of "1.0" as if the version header was
"1.0.0".

*+ The LRS MUST reject requests with version header prior to "1.0.0" unless such requests are
routed to a fully conformant implementation of the prior version specified in the header.

+ The LRS MUST reject requests with a version header of "1.1.0" or greater.

*+ The LRS MUST make these rejects by responding with an HTTP 400 error including a short
description of the problem.

* The Client MUST include the “X-Experience-API-Version” header in every request.
+ The Client MUST set this header to “1.0.1”.

* The Client SHOULD tolerate receiving responses with a version of "1.0.0" or later.
+ The Client SHOULD tolerate receiving data structures with additional properties.

* The Client SHOULD ignore any properties not defined in version 1.0.0 of the spec.

+ Systems MUST NOT convert Statements of newer versions into a prior version format, e.g., in
order to handle version differences.

+ Systems MAY convert Statements of older versions into a newer version only by following the
methods described in Appendix F: Converting Statements to 1.0.0.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 40

http://semver.org/spec/v1.0.0.html

ExXPERIENCE v1.0.1

Concurrency

Description Concurrency control makes certain that an API consumer does not PUT changes based on old data
into an LRS.

Details XAPI will use HTTP 1.1 entity tags (ETags) to implement optimistic concurrency control in the portions

of the APl where PUT may overwrite existing data, being:

+ State API
* Agent Profile API
» Activity Profile API

The State API will permit PUT Statements without concurrency headers, since state conflicts are
unlikely. The requirements below only apply to Agent Profile API and Activity Profile API.

Client » A Client using either Agent Profile API or Activity Profile APl MUST include the If-Match header or
Requirements the If-None-Match header.

LRS * An LRS responding to a GET request MUST add an ETag HTTP header to the response. (The
Requirements reason for specifying the LRS ETag format is to allow APl consumers that can't read the ETag

header to calculate it themselves.)

* An LRS responding to a GET request MUST calculate the value of this header to be a hexidecimal
string of the SHA-1 digest of the contents.

* An LRS responding to a GET request MUST enclose the header in quotes.

* An LRS responding to a PUT request MUST handle the If-Match header as described in
RFC2616, HTTP 1.1 if it contains an ETag, in order to detect modifications made after the
consumer last fetched the document.

* An LRS responding to a PUT request MUST handle the If-None-Match header as described in
RFC2616, HTTP 1.1 if it contains ™", in order to detect when there is a resource present that the
consumer is not aware of.

If the header precondition in either of the above cases fails, the LRS:

* MUST return HTTP status 412 "Precondition Failed".
« MUST NOT make a modification to the resource.

If a PUT request is received without either header for a resource that already exists, the LRS:

* MUST return HTTP status 409 "Conflict".
* MUST return a plain text body explaining that the consumer SHOULD

o check the current state of the resource.

o setthe "If-Match" header with the current ETag to resolve the conflict.
*+ MUST NOT make a modification to the resource.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 41

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.24
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26

Security

ExXPERIENCE v1.0.1

Rationale In order to balance the interoperability and the varying security requirements of different
environments, several authentication options are defined.

Details The below matrix describes the possible authentication scenarios.

A registered application is an application that will authenticate to the LRS as an OAuth consumer
that has been registered with the LRS. A known user is a user account on the LRS, or on a system
which the LRS trusts to define users.

Application is
registered

Application is

not registered

No application

No
authentication

Known user

Standard workflow for OAuth.

The application Agent is not identified
as a registered Agent and the LRS
cannot make assumptions on its
identity.

HTTP Basic Authentication is used
instead of OAuth, since no application
is involved.

User unknown

LRS trusts application to access xAPI without
additional user credentials. OAuth token steps
are not invoked.

MAY be supported by the LRS, possibly for testing purposes

Requirements The LRS MUST support authentication using at least one of the following methods:

+ OAuth 1.0 (RFC 5849), with signature methods of “HMAC-SHA1”, “RSA-SHA1”, and “PLAIN

TEXT”

+ HTTP Basic Authentication

+ Common Access Cards (implementation details to follow in a later version)

+ The LRS MUST handle making, or delegationg, decisions on the validity of Statements, and
determining what operations may be performed based on the credentials used.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01)

42

Requirements

Application
registered +
known user
Process and
Requirements

Application
registered +
user unknown
Process and
Requirements

Application not
registered +
known user
Process and
Requirements

No application +
known user
Process and
Requirements

No authorization
Process and
Requirements

ExXPERIENCE v1.0.1

Process of Each Scenario

* The LRS must record the application's name and a unique consumer key (identifier).
* The LRS must provide a mechanism to complete this registration, or delegate to another system
that provides such a mechanism.
* The LRS MUST be able to be configured for complete support of the xAPI:
o With any of the methods below.
o In any of the workflow scenarios below.
* The LRS MAY (for security reasons):
o Support a subset of the methods below.
o Limit the known users or registered applications.
* The LRS SHOULD at a minimum supply OAuth with "HMAC-SHA1" and "RSA-SHA1" signatures

» Use endpoints in section 6.4.2 OAuth Authorization Scope to complete the standard workflow.

» If this form of authentication is used to record Statements and no authority is specified, the LRS
should record the authority as a group consisting of an Agent representing the registered
application, and an Agent representing the known user.

* The LRS honors requests that are signed using OAuth with the registered application's credentials
and with an empty token and token secret.

» If this form of authentication is used to record Statements and no authority is specified, the LRS
should record the authority as the Agent representing the registered application.

* Use a blank consumer secret.

* Call "Temporary Credential" request.

* Specify "consumer_name" and other usual parameters. User will then see "consumer_name" plus
a warning that the identity of the application requesting authorization cannot be verified.

 The LRS MUST record an authority that includes both that application and the authenticating user,
as a group, since OAuth specifies an application.

* Use username/password combination that corresponds to an LRS login.
» Authority to be recorded as the Agent identified by the login, unless...
o other Authority is specified and...
o LRS trusts the known user to specify this Authority.

* Requests should include headers for HTTP Basic Authentication based on a blank username and
password, in order to distinguish an explicitly unauthenticated request from a request that should
be given a HTTP Basic Authentication challenge.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 43

OAuth Authorization Scope

ExXPERIENCE v1.0.1

Description These are recommendations for scopes which should enable an LRS and an application

communicating using the XAPI to negotiate a level of access which accomplishes what the application

needs while minimizing the potential for misuse. The limitations of each scope are in addition to any
security limitations placed on the user account associated with the request.

Details The following table lists XAPI scope values:
Scope Permission
statements/write write any Statement
statements/read/mine read Statements written by "me", that is with an authority matching what the LRS

would assign if writing a Statement with the current token.
statements/read read any Statement

state read/write state data, limited to Activities and Actors associated with the current
token to the extent it is possible to determine this relationship.

define (re)Define Activities and Actors. If storing a Statement when this is not granted,
ids will be saved and the LRS may save the original Statement for audit purposes,
but should not update its internal representation of any Actors or Activities.

profile read/write profile data, limited to Activities and Actors associated with the current
token to the extent it is possible to determine this relationship.

all/read unrestricted read access

all unrestricted access

OAuth Extended Parameters

Note that the parameters "consumer_name" and "scope” are not part of OAuth 1.0, and therefore if
used should be passed as query string or form parameters, not in the OAuth header.

OAuth Endpoints

Name Endpoint Example
Temporary Credential Request ~ OAuth/initiate http://example.com/xAPI/OAuth/initiate
Resource Owner Authorization ~ OAuth/authorize http://example.com/xAPI/OAuth/authorize

Token Request OAuth/token http://example.com/xAPI/OAuth/token

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01)

44

ExXPERIENCE v1.0.1

Requirements *+ The LRS MUST accept a scope parameter as defined in OAuth 2.0.
*+ The LRS MUST assume a requested scope of "statements/write" and "statements/read/mine" if
no scope is specified.
* The LRS MUST support the scope of "all" as a minimum.
* The LRS MAY support other scopes.
* The Client SHOULD request only the minimal needed scopes, to increase the chances that the
request will be granted.

Example The list of scopes determines the set of permissions that is being requested. For example, an
instructor might grant "statements/read" to a reporting tool, but the LRS would still limit that tool to
Statements that the instructor could read if querying the LRS with their credentials directly (such as
Statements relating to their students).

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 45

https://tools.ietf.org/html/draft-ietf-oauth-v2-22%22%20%5Cl%20%22section-3.3

ExXPERIENCE v1.0.1

7.0 DATA TRANSFER (REST)

Description This section describes that the XAPI consists of 4 sub-APIs: Statement, State, Agent Profile, and
Activity Profile. The four sub-APIs of the Experience API are handled via RESTful HTTP methods.
The Statement API can be used by itself to track learning records.

Note In all of the example endpoints given in the specification, "http://example.com/xAPI/" is the example
IRL of the LRS. All other IRI syntax after this represents the particular endpoint used.

Requirements + The LRS MUST reject with HTTP 400 Bad Request status any request to any of these APIs that

use any parameters which the LRS does not recognize. (Note: LRSs may recognize and act on
parameters not in this specification).

+ The LRS MUST reject with HTTP 400 Bad Request status any request to any of these APIs that
use any matching parameters described in this specification in all but case.
+ The LRS MUST reject a batch of statements if any statement within that batch is rejected.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 46

Description

Details

Requirements

Error Codes

exXPeRIENCE

v1.0.1

The list below offers some general guidance on HTTP error codes that could be returned from various

methods in the API.

400 Bad Request

401
Unauthorized

403 Forbidden

404 Not Found

409 Conflict

412 Precondition
Failed

413 Request
Entity Too
Large

500 Internal
Server Error

Indicates an error condition caused by an invalid or missing argument. The term
"invalid arguments" includes malformed JSON or invalid Object structures.

Indicates that authentication is required, or in the case authentication has been
posted in the request, that the given credentials have been refused.

Indicates that the request is unauthorized for the given credentials. Note this is
different than refusing the credentials given. In this case, the credentials have been
validated, but the authenticated Client is not allowed to perform the given action.

Indicates the requested resource was not found. May be returned by any method
that returns a uniquely identified resource, for instance, any State or Agent Profile or
Activity Profile API call targeting a specific document, or the method to retrieve a
single Statement.

Indicates an error condition due to a conflict with the current state of a resource, in
the case of State API, Agent Profile or Activity Profile API calls, or in the Statement
PUT call. See Section 6.3 Concurrency for more details.

Indicates an error condition due to a failure of a precondition posted with the
request, in the case of State or Agent Profile or Activity Profile API calls. See
Section 6.3 Concurrency for more details.

Indicates that the LRS has rejected the Statement or document because its size is
larger than the maximum allowed by the LRS. The LRS is free to choose any limit
and MAY vary this limit on any basis, e.g., per authority, but MUST be configurable
to accept Statements of any size.

Indicates a general error condition, typically an unexpected exception in processing
on the server.

. An LRS MUST return the error code most appropriate to the error condition based on the list

above.

. An LRS SHOULD return a message in the response explaining the cause of the error.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01)

47

Description

Details

Requirements

Details

Requirements

ExXPERIENCE v1.0.1

Statement API

The basic communication mechanism of the Experience API.

PUT Statements

Example endpoint: http://example.com/xAPI/statements
Stores Statement with the given id.

Returns: 204 No Content

Parameter Type Default Required Description

statementld String Required id of Statement to record

*+ An LRS MUST NOT make any modifications to its state based on receiving a Statement with a
statementID that it already has a Statement for. Whether it responds with 409 Conflict or 204
No Content, it MUST NOT modify the Statement or any other Object.

+ Ifthe LRS receives a Statement with an id it already has a Statement for, it SHOULD verify the
received Statement matches the existing one and return 409 Conflict if they do not match.

+ The LRS MAY respond before Statements that have been stored are available for retrieval.

POST Statements

Example endpoint: http://example.com/xAPI/statements

Stores a Statement, or a set of Statements. Since the PUT method targets a specific Statement id,
POST must be used rather than PUT to save multiple Statements, or to save one Statement without
first generating a Statement id. An alternative for systems that generate a large amount of Statements
is to provide the LRS side of the API on the AP, and have the LRS query that API for the list of
updated (or new) Statements periodically. This will likely only be a realistic option for systems that
provide a lot of data to the LRS.

Returns: 200 0K, statement id(s) (UUID).

+ An LRS MUST NOT make any modifications to its state based on a receiving a Statement with a
statementld that it already has a statement for. Whether it responds with 469 Conflict, or
204 No Content, it MUST NOT modify the Statement or any other Object.

+ Ifthe LRS receives a Statement with an id it already has a Statement for, it SHOULD verify the
received Statement matches the existing one and return 409 Conflict if they do not match.

+ The LRS MAY respond before Statements that have been stored are available for retrieval

+ GET Statements MAY be called using POST and form fields if necessary as query strings have
limits.

+ The LRS MUST differentiate a POST to add a Statement or to list Statements based on the
parameters passed.

© 2013 Advanced Distributed Learning Initiative, U.S. Department of Defense (Last updated 2013-10-01) 48

Details

GET Statements

ExXPERIENCE v1.0.1

Example endpoint: http://example.com/xAPI/statements

This method may be called to fetch a single Statement or multiple Statements. If the statementld or
voidedStatementld parameter is specified a single Statement is returned.

Otherwise returns: A StatementResult Object, a list of Statements in reverse chronological order
based on "stored" time, subject to permissions and maximum list length. If additional results are
available, an IRL to retrieve them will be included in the StatementResult Object.

Returns: 200 0K, Statement or Statement Result (See section 4.2 for details)

Parameter

statementid
voidedStatement
id

agent

verb

activity

registration

related_activities

related_agents

Type Default

String

String

Agent or Identified
Group Object
(JSON)

Verb id (IRI)

Activity id (IRI)

uuib
Boolean False
Boolean False

Description
id of statement to fetch

id of voided statement to fetch. see Voided Statements

Filter, only return Statements for which the specified Agent
or group is the Actor or Object of the Statement.

o Agents or identified groups are equal when the same
Inverse Functional Identifier is used in each Object
compared and those Inverse Functional Identifiers
have equal values.

o For the purposes of this filter, groups that have
members which match the specified Agent based on
their Inverse Functional Identifier as described above
are considered a match

See agent/group Object definition for details

Filter, only return statements matching the specified verb
id.

Filter, only return statements for which the Object of the
statement is an Activity with the specified id.

Filter, only return Statements matching the specified
registration id. Note that although frequently a unique
registration id will be used for one Actor assigned to one
Activity, this should not be assumed. If only Statements for
a certain Actor or Activity should be returned, those
parameters should also be specified.

Apply the Activity filter broadly. Include Statements for
which the Object, any of the context Activities, or any of
those properties in a contained Sub-St