The Next Generation of SCORM: Innovation for the Global Force

Jonathan Poltrack, Problem Solutions
Jason Haag, Tolliver Group
Andy Johnson, Problem Solutions
Nikolaus Hruska, Problem Solutions

Advanced Distributed Learning
The Sharable Content Object Reference Model (SCORM) is the de-facto global learning standard.

SCORM is widely used in academia, industry, and government to create reusable, interoperable content.

More than 330 certified SCORM products.

Focuses on a single learner in a web-based training system.

Reports to a traditional Learning Management System (LMS).
• We began gathering requirements for a new API to
 – Cover gaps in SCORM and
 – Enable new technological use cases
• “Project Tin Can” Broad Agency Announcement (BAA)
 – Interviewed eLearning community members
 – Reviewed of LETSI whitepapers (100+)
 – Crowdsourced feature requests (uservoice.com)
 – Prioritized and compiled use cases
• Defense ADL Working Group (DADL WG) feedback
Top Requirements

- Support out-of-browser learning activities with non-proprietary solutions (different content types)
- Enable offline, disconnected or intermittent connections
- Support distributed content and systems
- Connect value-added services for learning analytics to storage systems
- Define how stored data is retrieved in a consistent manner
- Update the communication mechanism
- Support social learning scenarios
- Make it simple!
Do we need a learning specification that expands on the capabilities of SCORM?
The Next Generation of SCORM

- The “Training and Learning Architecture” (TLA)
- Leverages cloud computing and service-oriented architecture
- Modern software communication with learning systems via web services
- Tracks formal and informal learning scenarios
- Supports mobile devices, games, simulations, virtual worlds, and real-world experiences
Goals for the TLA

• Support the Global Force
• Leverage mobile devices, virtual worlds, simulations, and games
• Capture lifelong learning
• Enable a truly distributed learning environment
• Allow sharing of learning data across systems
• Deliver relevant content using Semantic Web technologies
How will we start to meet these goals for our stakeholders?

Government, Industry and Academia
Social Learning

- Social networks are online communities of shared interest (ex. Twitter)
- Learners develop a trusted “Personal Learning Network” via social media interactions
- Enables learners to look for knowledge outside their personal experience
- Learners can connect to experts, peers, and mentors for knowledge
- Traditional LMSs don’t track and record these social learning activities
Activity Streams

• The major social media companies developed the Activity Streams specification to capture social learning activities

• Format: “I Did This” - <actor> <verb> <object>

 – Activity Stream examples:
 • Jason authored I/ITSEC Paper
 • Jonathan mentored Jason
 • Andy completed CPR 101
 • Nikolaus attended I/ITSEC 2012

• Social networks provide “streams” of data

• Research shows Twitter streams being used effectively as an educational tool

• Instructors gain credibility from students when posting social or scholarly information
Semantic Web

- Activity Streams can be thought of as a triple
 - Ex. “Mark Twain wrote Huckleberry Finn”
 - Allows questions like “What other works did Mark Twain write?”
- Enable systems to infer information through the defined semantic relationships
 - Ex. recipes have prep time, calories, and ingredients
 - Ex. bank search gives phone #, directions, and a map
- Many available options to add rich semantic data to content
 - schema.org, microformats, microdata, Open Graph, META Tags
- GOAL: Systems can make meaning from the learner’s context to deliver relevant, related content through semantic analysis
Looking to industry to set an example for Activity Streams
Activity Streams Industry Support

• Google+, Twitter, Instagram
 – Ex. Nikolaus *liked* a photo
 – Ex. Jason *commented* on a photo

• Massively Multiplayer Online Games (MMOGs)
 – Ex. Andy *found* 86 Gold Coins

• Facebook “Open Graph” platform
 – Ex. Jonathan *read* the Odyssey

• ADL is representing the learning and training community
How do we track such diverse data?
Experience API Features ("Tin Can API")

- Comprises the first component of the TLA
- Stores all data in a Learning Record Store (LRS)
- Features an updated runtime communication method
- Allows reporting of Activity Streams from virtual, online, or real world activities
- Enables communication with out-of-browser content
- Allows flexible reporting and new data collection capabilities with a fully extensible architecture
Short Term Research Objectives

• Complete Experience API Specification v1.0
 – Drive spec changes and features from community
 – Develop open source prototypes
 – Allow early adopters in commercial space to build support into their products
 – Move version 1.0 to standards body

• Support mobile learning!
 – Solve immediate needs of community to track mobile learning
 – Support both web and native mobile applications
 – Build reusable libraries
 – Prototype with the Services
Long Term Objectives

- Define domain-specific extensions for communities of practice
 - Ex. Medical, DoD, K-12 and Higher Education
- Support team-based learning, informal learning, and social learning
- Enable tools for roles other than learners
 - Ex. instructors, mentors, aides
- Let community build apps on top of the API
 - Ex. City of San Francisco public transportation
Future Research Areas

- Learner profile technologies
- Just-in-time content brokering
- Intelligent tutoring
- Cognitive adaptability
- Improvement of retention
- Experiential learning
- Big data analytics
- Open independent learner models
- Semantic determination
- Application of virtual environments
- Social problem solving
- Self-directed learning
Questions?

- Jonathan Poltrack
 - jonathan.poltrack.ctr@adlnet.gov

- Jason Haag
 - jason.haag.ctr@adlnet.gov

- Andy Johnson
 - andy.johnson.ctr@adlnet.gov

- Nikolaus Hruska
 - nikolaus.hruska.ctr@adlnet.gov