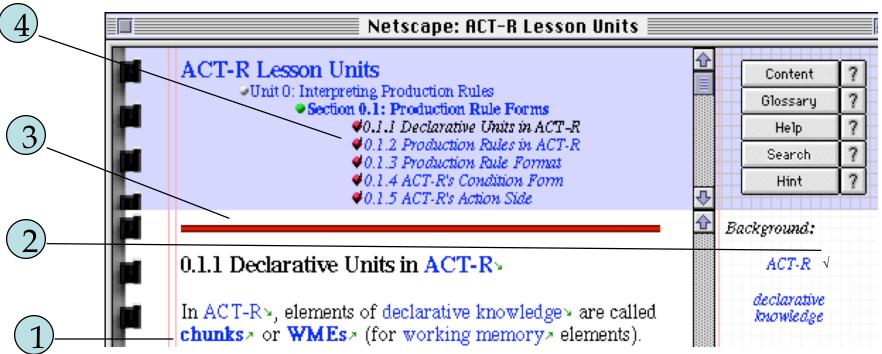


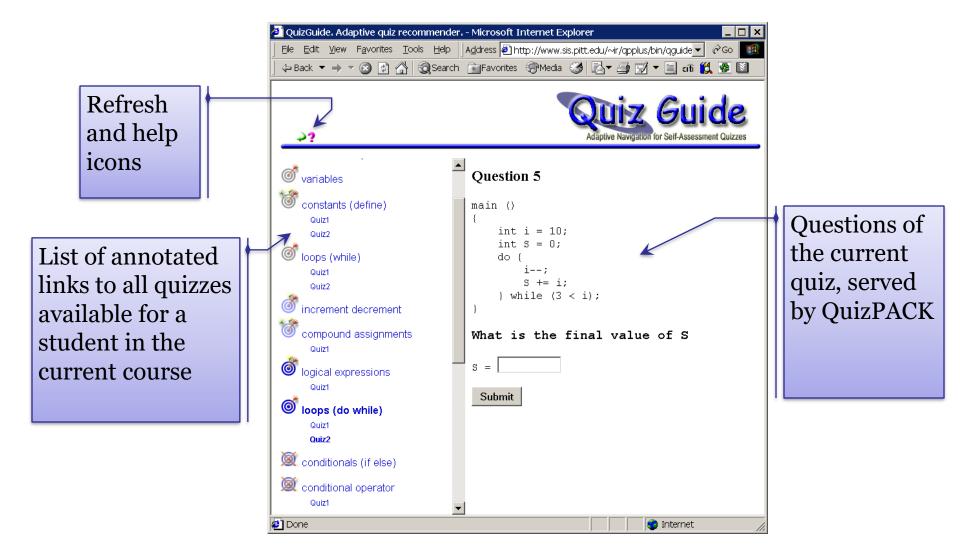
Overview

- The past
 - Why we are doing it?
- The paper
 - Open Social Sudent Modeling and its evaluation
- Beyond the paper
 - What we have done since submitting the paper?
- The future
 - What are our plans and invitation to collaborate


The Past

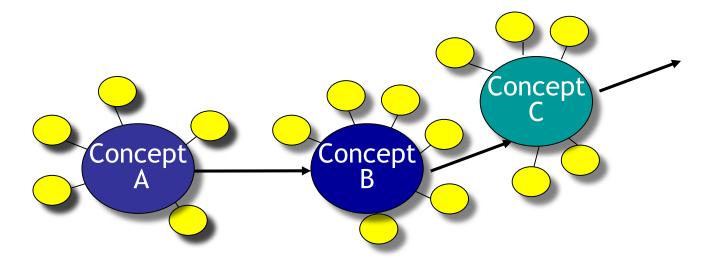
- Why?
 - -Increase user performance
 - -Increase motivation and retention
- How?
 - -Adaptive Navigation Support
 - -Topic-based Adaptation
 - -Open Social Student Modeling

Adaptive Link Annotation: InterBook



- 1. Concept role
- 2. Current concept state

- 3. Current section state
- 4. Linked sections state



QuizGuide = Topic-Based ANS

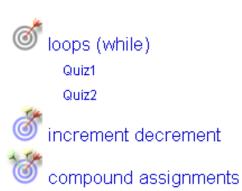
Topic-Based Adaptation

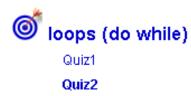
- Each topic is associated with a number of educational activities to learn about this topic
- Each activity classified under 1 topic

QuizGuide: Adaptive Annotations

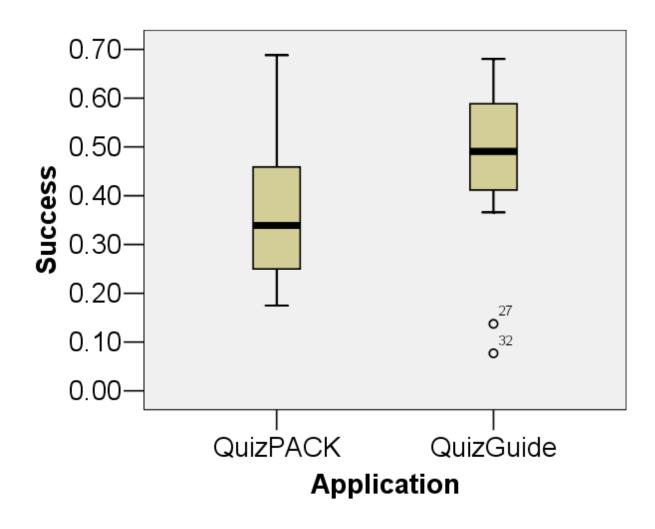
- Target-arrow abstraction:
 - Number of arrows level of knowledge for the specific topic (from 0 to 3).
 Individual, event-based adaptation.

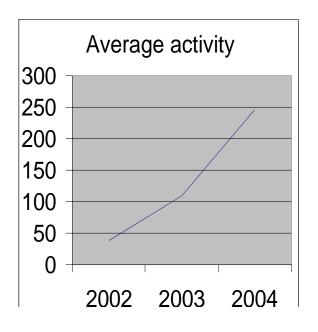
 Color Intensity – learning goal (current, prerequisite for current, not-relevant, not-ready). Group, timebased adaptation.

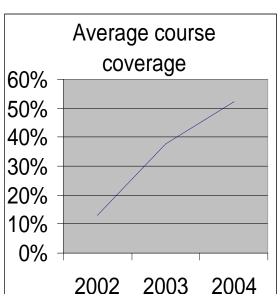


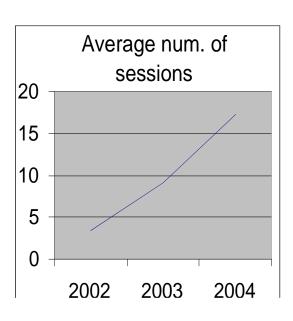


■ Topic—quiz organization:


Quiz1




QuizGuide: Success Rate



QuizGuide: Motivation

- Within the same class QuizGuide session were much longer than QuizPACK sessions: 24 vs. 14 question attempts at average.
- Average Knowledge Gain for the class rose from 5.1 to 6.5

Topic-Based ANS: Success Recipes

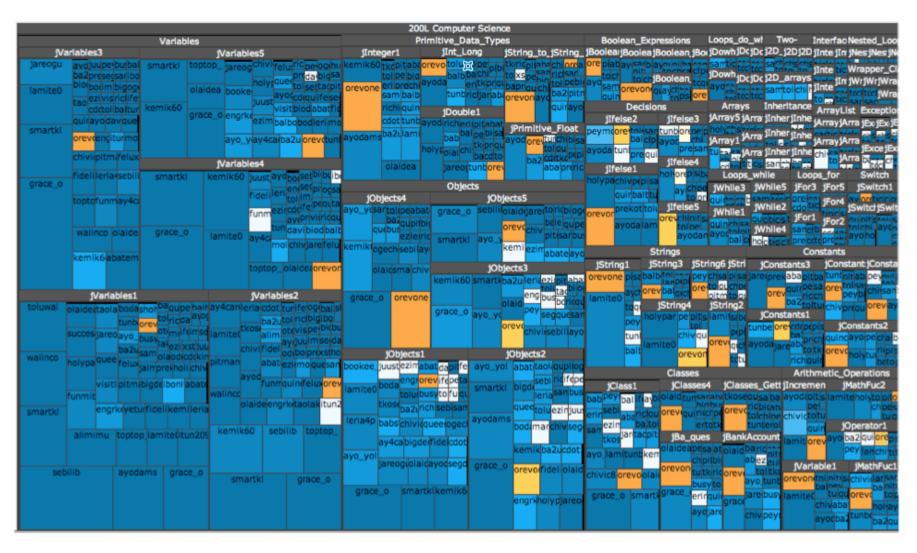
- Topic-Based interface organization is familiar, matches the course organization, and provides a compromise between too-much and too-little
- Two-way adaptive navigation support guides to the right topic
- Open student model provides clear overview of the progress

Social Guidance

- Concept-based and topic-based navigation support work well to increase success and motivation
- Knowledge-based approaches require some knowledge engineering – concept/topic models, prerequisites, time schedule
- In our past work we learned that social navigation –
 "wisdom" extracted from the work of a community
 of learners might replace knowledge-based
 guidance
- Social wisdom vs. knowledge engineering

Knowledge Sea II

Social Navigation to support course readings

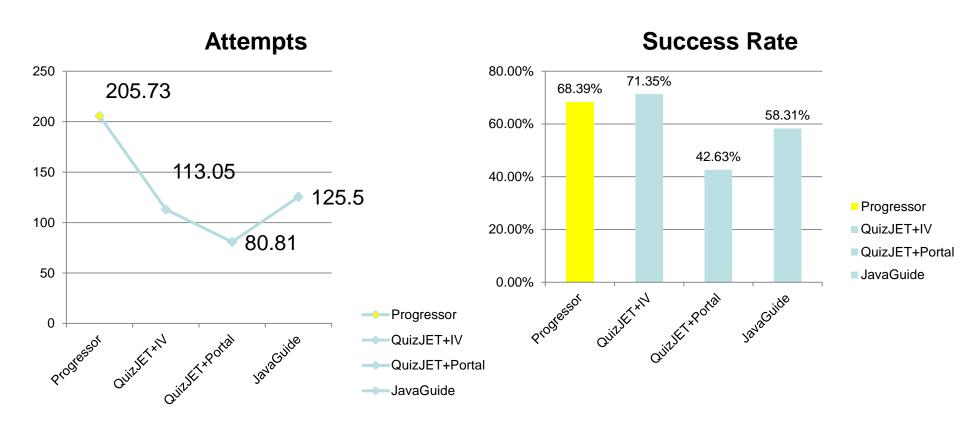


Open Social Student Modeling

- Key ideas
 - Assume simple topic-based design
 - Show topic- and content- level knowledge progress of a student in contrast to the same progress of the class
- Main challenge
 - How to design the interface to show student and class progress over topics?
 - We went through several attempts...

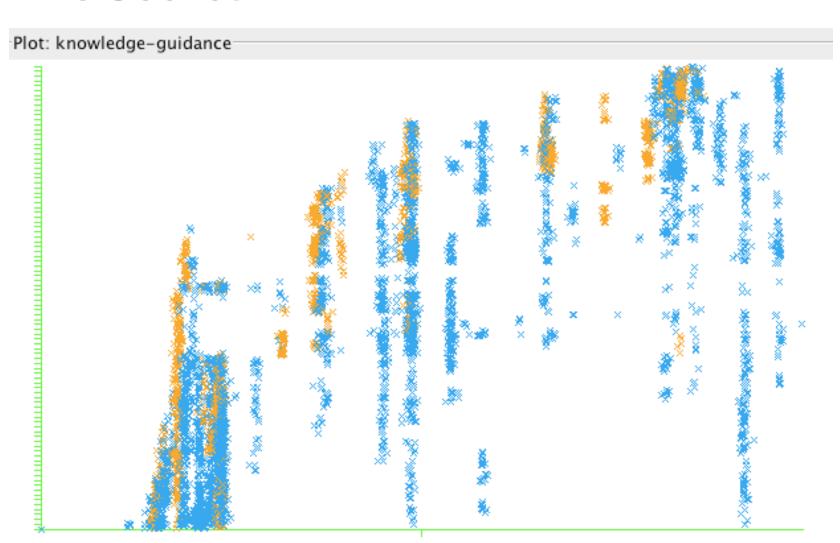
QuizMap

Progressor



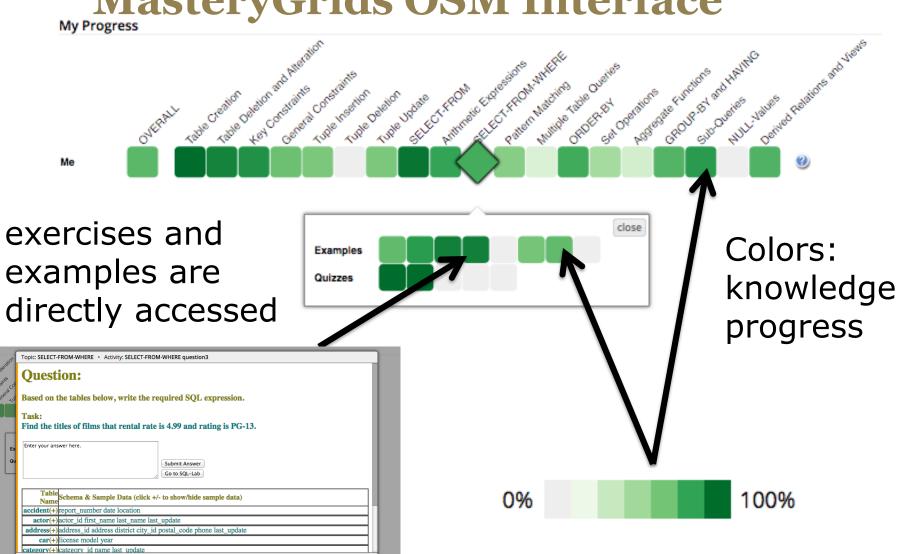
OSLM: Success Recipes

- Topic organization should follow the natural progress or topics in the course
- Clear comparison between "me" and "group"
- Ability to compare with individual peers, not only the group
- Privacy management



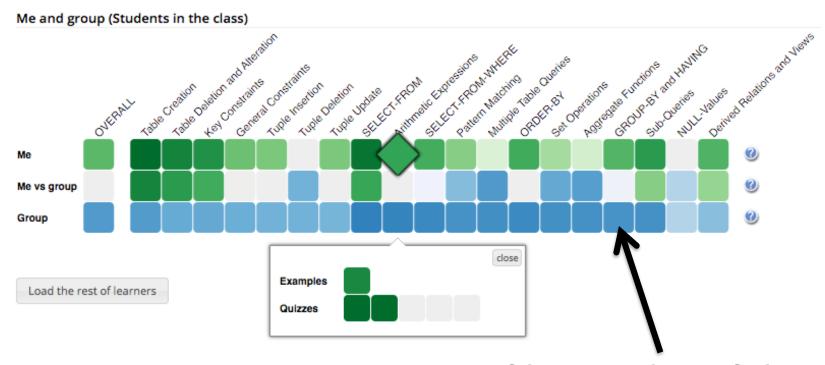
The Value of OSLM

The Secret

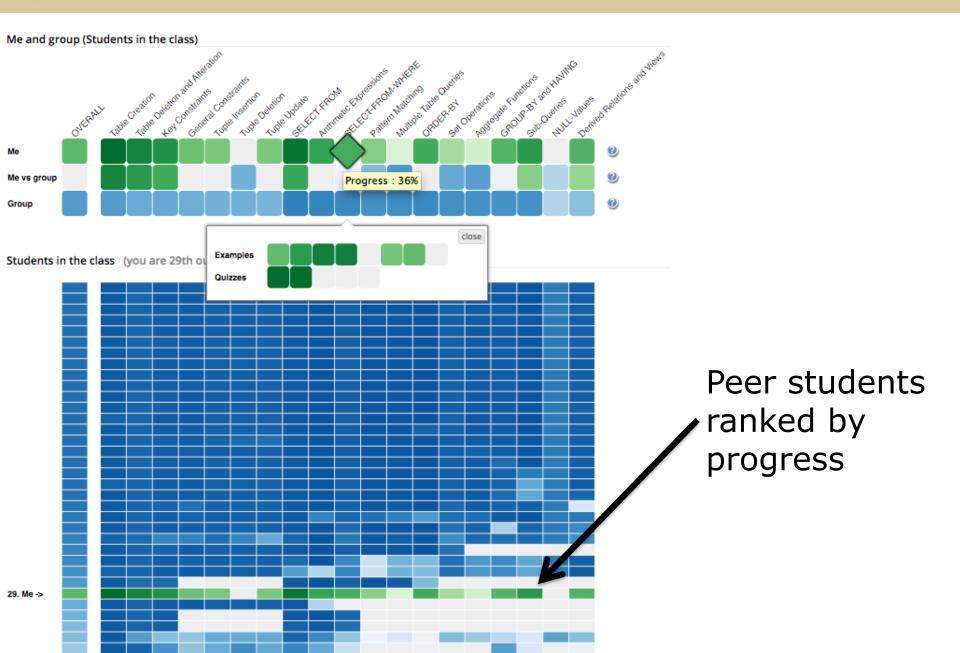


MasteryGrids

- Adaptive Navigation Support
- Topic-based Adaptation
- Open Social Student Modeling
- Social Educational Progress Visualization
- Multiple Content Types
- Open Source
- Concept-Based Recommendation
- Multiple Groups



MasteryGrids OSM Interface



MasteryGrids OSSM Interface

progress of knowledge of the group is represented in blue

The Study

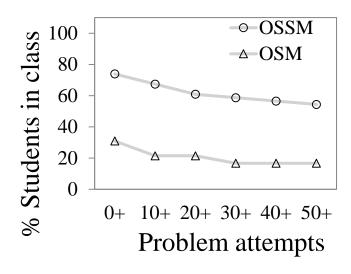
- A classroom study in a graduate Database Course
- Two sections of the same class. Same teacher, same lectures, etc.
- The students were able to access non-mandatory database practice content (exercises, examples) through Mastery Grids
- 47 students worked with OSM interface and 42 students worked with OSSM interface

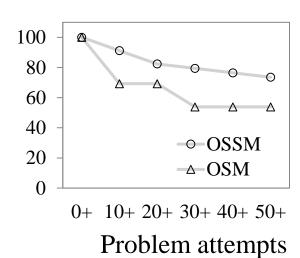
Participants

	OSSM		OSM	
Systems/sex	f	%	f	%
Female	26	55.3	21	50
Male	21	44.7	21	50
Total	47	100	42	100

Data Collection

- Pre- and post-test
- Student activities with the system
 - every attempt to solve problems,
 - every example line viewed
 - **—** ...
- The Iowa-Netherlands Comparison Orientation Measure
 - how often students compare themselves with other people
 - Likert-type questionnaire, 11 items
- End of semester questionnaire


Impact on Learning


- Student knowledge significantly increased in both groups
- Number of attempted problems significantly predicts the final grade (SE=0.04,p=.017).
- We obtained the coefficient of 0.09 for *number of* attempts on *problems*, meaning attempting 100 problems increases the final grade by 9
- The mean learning gain was higher for both weak and strong students in OSSM group
- The difference was significant for weak students
 (n= 033)

Does OSSM increase student engagement

- OSSM group had much higher student usage
- Looking much more interesting to students at the start (compare #students after the first login)
- At the level of 30+, serious engagement with the system, the OSSM group still retained more than 50% of its original users while OSM engagement was below 20%.

Does OSSM increases system usage?

Variable	OSM	OSSM	U	
Variable	Mean	Mean		
Sessions	3.93	6.26	685.500*	
Topics coverage	19.0%	56.4%	567.500**	
Total attempts to problems	25.86	97.62	548.500**	
Correct attempts to problems	14.62	60.28	548.000**	
Distinct problems attempted	7.71	23.51	549.000**	
Distinct problems attempted correctly	7.52	23.11	545.000**	
Distinct examples viewed	18.19	38.55	611.500**	
Views to example lines	91.60	209.40	609.000**	
MG loads	5.05	9.83	618.500**	
MG clicks on topic cells	24.17	61.36	638.500**	
MG click on content cells	46.17	119.19	577.500**	
MG difficulty feedback answers	6.83	14.68	599.500**	
Total time in the system	5145.34	9276.58	667.000**	
Time in problems	911.86	2727.38	582.000**	
Time in MG (navigation)	2260.10	4085.31	625.000**	

Does OSSM increase Efficiency?

- Time per line, time per example and time per activity scores of students in OSSM group are significantly lower than in the other group.
- Students who used OSSM interface worked more efficiently.

Variable	OSM	OSSM	. \mathbf{U}
variable	Mean	Mean	O
Time per line	22.93	11.61	570.000**
Time per example	97.74	58.54	508.000*
Time per problem	37.96	29.72	242.000
Time per activity	47.92	34.33	277.000*

Usability and Usefulness Questionnaire Analysis

- 53 students (81 28 usage < 300 seconds)
 - 32 in OSM+Social (18 f, 14 m)
 - 21 in OSM (10 f, 11 m)
- Questions in 5-Likert scale (1 low -> 5 high)
- 3 parts:
 - Part 1 (all students) about common OSM features
 - Part 2 (only OSM group) about the prospetive of using OSSM features
 - Part 3 (only OSM+Social group): about social comaprison features

Findings: Part 1

	<u> </u>		OS	SM	OSM+Social	
	Part 1		M	SE	M	SE
	1	In general, it was useful to see my progress in Mastery Grids (MG)	3.76	.228	4.03	.145
	2	In general, I liked the interface of MG	3.86	.221	3.84	.163
	R	Seeing my progress in the tool motivated me to work on quizzes and examples	3.52	.214	4.09	.130
	4	The interface helped me to understand how the class content is organized	3.62	.223	3.81	.176
-	5	The interface helped me to identify my weak points	3.52	.190	3.84	.186
1	6	The interface helped me to plan my class work	3.33	.211	3.22	.160
1	7	It was clear how to access questions and examples	3.81	.264	3.56	.190
	8	It was useful to see my knowledge progress for each topic [in MG]	3.71	.171	4.03	.135
	9	It was useful to see how I am doing with individual quizzes and examples	3.71	.197	4.16	.128
	10	Using green colors in different intensity to show my progress was easy to understand	3.90	.217	4.09	.151

(3) OSSM group value OSM features more than than OSSM

(Mann-Whitney U=225, p=.026 two-tailed)

(all) Tendency
OSM+Social > OSM
(all responses higher,
but not significant diff)

.193

Findings

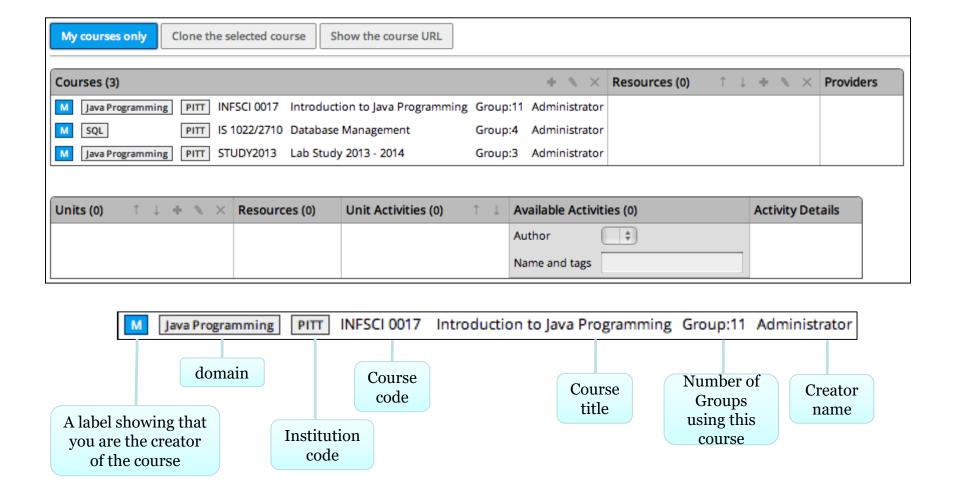
		OSM		OSM+Social	
Pa	Part 1		SE	M	SE
1	In general, it was useful to see my progress in Mastery Grids (MG)	3.76	.228	4.03	.145
2	In general, I liked the interface of MG	3.86	.221	3.84	.163
3	Seeing my progress in the tool motivated me to work on quizzes and examples	3.52	.214	4.09	.130
	(Wilcoxon Si	p=.031 Signed Rank test)			l

Part 3, question 10

10 Viewing my classmates' progress motivated me to work more in quizzes and examples 3.88

Findings

- OSSM group is more excited about OSM part
- OSSM group value OSM features more than OSM group (Mann-Whitney U=225, p=.026 two-tailed)
- OSSM group is more positive about social features that OSM
 - the actual experience is better than they think it would be.



What we are doing now?

- Sex analysis
- Easy authoring to define "your course"
- Exploring more advanced guidance and modeling approaches based on large volume of social data
- Interface and cultural studies in a wide variety of classes from US to Nigeria
 - Interested to be a pilot site? Write to peterb@pitt.edu

Course Authoring Interface

Acknowledgements

- Past work on ANS and OSLM
 - Sergey Sosnovsky
 - Michael Yudelson
 - Sharon Hsiao
- Pitt "Innovation in Education" grant
- NSF Grants
 - EHR 0310576
 - IIS 0426021
 - CAREER 0447083
- ADL "PAL" grant to build MasteryGrids

Read About It! Try It!

- GitHub link
 - https://github.com/PAWSLabUniversityOfPittsburgh/MasteryGrids
- **Brusilovsky, P., Sosnovsky, S., and Yudelson, M.** (2009) Addictive links: The motivational value of adaptive link annotation. *New Review of Hypermedia and Multimedia* **15** (1), 97-118.
- **Hsiao**, **I.-H.**, **Sosnovsky**, **S.**, **and Brusilovsky**, **P.** (2010) Guiding students to the right questions: adaptive navigation support in an E-Learning system for Java programming. *Journal of Computer Assisted Learning* **26** (4), 270-283.
- Hsiao, I.-H., Bakalov, F., Brusilovsky, P., and König-Ries, B. (2013) Progressor: social navigation support through open social student modeling. *New Review of Hypermedia and Multimedia*
- Brusilovsky, P., Somyurek, S., Guerra, J., Hosseini, R., and Zadorozhny, V. (2015) The Value of Social: Comparing Open Student Modeling and Open Social Student Modeling. In: F. Ricci, K. Bontcheva, O. Conlan and S. Lawless (eds.) Proceedings of 23nd Conference on User Modeling, Adaptation and Personalization (UMAP 2015), Dublin, Ireland, , June 29 July 3, 2015, Springer Verlag, pp. 44-55, also available at http://link.springer.com/chapter/10.1007/978-3-319-20267-9_4.