

Distribution Statement A
Approved for public release: distribution unlimited.

Technical Report: DAVE
February 2020

Data Analytics and Visualization Environment for xAPI
and the Total Learning Architecture

25 February 2020

This work was supported by the U.S. Advanced Distributed Learning (ADL) Initiative
HQ0034-19-F-0385. The views and conclusions contained in this document are those

of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the ADL Initiative or the U.S. Government. The U.S.

Government is authorized to reproduce and distribute reprints for Government purposes.

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

February 2018 - February 2020

Data Analytics and Visualization Environment
for xAPI and the Total Learning Architecture:
DAVE February 2020 Technical Report

17

N/A

N/A

UU

N/A

Data Analytics, Data Algorithms, Primitives, Data Visualizations, Analytics, Algorithms, Visualizations, ADL, Advanced
Distributed Learning, DAVE, Data Analytics and Visualization Environment

N/A

Research Report

U

0603769D8Z

HQ0034-18-C-0040

U

Blake-Plock, Shelly.

Nick Armendariz

OUSD Personnel & Readiness
Advanced Distributed Learning Initiative
13501 Ingenuity Drive, Suite 248
Orlando, Florida 32826

407-381-5550

This report summarizes the culmination of the Data Analytics and Visualization Environment (DAVE) project. This report focuses
on all aspects of the projects that are included in the beta release of February 2020. This report lays out a technical summary,
software updates, deliverables, and a wayahead. Software components, access information, user interface, and user experience are
all covered in this report. In addition, data specifications are provided, along with technical information about the portability of
data. The beta state is described, and the pathway to a final prototype is given, as well as supplemental efforts that would benefit
DAVE.

Distribution A

02-25-2020

OUSD/P&R/FE&T/ADLI

Yet Analytics, Inc.
201 E Baltimore Street
Suite. 630
Baltimore, MD 21202

U

Technical Report: DAVE
February 2020

Data Analytics and Visualization Environment for xAPI
and the Total Learning Architecture

Prepared by Shelly Blake-Plock, PI, Yet Analytics, Inc.
Submitted to ADL TPOC on February 25, 2020

1. Purpose of this Document

The purpose of this document is to present a report and related summary documentation
regarding the beta prototype of the Data and Visualization Environment (DAVE) for xAPI and
the Total Learning Architecture.

1. Purpose of this Document 1

2. Project Description 2

3. Technical Summary 3

4. Accessing DAVE 6

5. Reference Datasets 6

6. Beta Implementation 7
6.1 Analysis 7
6.2 Visualization Syntax (Vega) 7
6.3 Data Transformation Concepts (DAVE Primitives) 8

6.3.1 Operations 9
6.3.2 Primitives 10
6.3.3 Algorithms 10

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 1

6.4 Data Transform Input Syntax (Datalog) 10

7. Next Steps: Getting to TRL 6 11

8. Opportunity for Further R&D 13
8.1 DAVE Analysis Template Library & xAPI Profiles 13
8.2 High Volume Transform Scaling Reference Architecture 14
8.3 Rule Bundles 14

9. Appendix 15
9.1 DAVE Live Reference Implementation 15
9.2 VEGA Syntax Example 15
9.3 DAVE Query Syntax Documentation 17

2. Project Description

The DAVE Framework aims to provide a common means through which DoD and Federal
Stakeholders can analyze, interpret, and visualize micro-level behavior-driven learning aligned
to the technical requirements of xAPI, xAPI Profiles, and the Total Learning Architecture (TLA).

DAVE provides a user with the ability to customize xAPI data analysis and the resulting portable
data visualizations.

The framework itself was built to be deployed anywhere (on the JVM or Javascript runtimes) in
Clojure and ClojureScript. It is intended to require very little setup and configuration by a user.

DAVE is available as an Open Source Apache 2.0 licensed project on Github
<​https://github.com/yetanalytics/dave​>.

This beta implementation of the DAVE Framework builds on the alpha implementation and
adds what was discovered in earlier phases of the project in order to provide the required
flexibility for broad applicability across DoD and Federal Stakeholder needs.

The fundamental advancement of this update to the DAVE Framework is the addition of the
ability for a user to develop a custom Analysis of xAPI data without having to extend the
framework itself.

While earlier iterations relied on research Questions, this approach was found to be inadequate

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 2

for government needs. In the research question model, while some flexibility existed for the
development of resulting visual elements, the filter and transformation of the data itself (referred
to as a Function) had to be pre-defined as part of the application — in essence, limiting
end-users to what had already been considered unless new code was added to the Function
library.

Upon completion of this beta update to the Framework, DAVE now has these new key features:

● Functional Primitives​ which break the processing of xAPI data down into discrete units
that can be composed to create new analytical functions. Primitives allow users to
address the methodology of answering research questions as a sequence of generic
algorithmic steps which establish the necessary data transformations, aggregations, and
calculations required to reach the solution in an implementation-agnostic way.

● Statement Filtering​ which allows the filtering of xAPI statement collections against any
criteria relevant to research goals. This allows a user to ignore data that is irrelevant to
their problem domain.

● Transform Language ​which combines data filtering and data transforms (as defined in
the Primitives definition) into a coherent syntax that can be used to efficiently instruct the
Dave Framework on how to treat xAPI data.

● UI Improvements​ which have simplified the navigation and user interaction with the
system.

● Documentation​ which includes the update of the algorithm description for the use of
functional primitives.

3. Technical Summary

DAVE — the Data Analytics and Visualization Environment for xAPI and the Total Learning
Architecture — provides a means of quickly creating portable data visualizations purpose
built for xAPI-based semantics. The DAVE Framework provides a language and syntax for
filtering and transforming xAPI data and a path to output it into completely customizable
visualizations.

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 3

The architecture of DAVE, and the technologies and concepts employed for implementation,
satisfy two primary deployment considerations. First, this beta version of the application is
lightweight and can be deployed in any location, including browser-only with no server side
implementation. This makes it portable and requires very little — if any — setup for basic use.

The other consideration is potential scale. The technologies and protocols chosen for these
beta additions to the DAVE Framework can be scaled to handle very large streaming
datasets, and can be modified to distribute workloads horizontally.

All of the source code and documentation supporting the DAVE framework is located as an
Apache 2.0 licensed project on Github <​https://github.com/yetanalytics/dave​>.

The framework provides scaffolding for the design of algorithms meant to leverage the
attributes found in xAPI data statements. These templates — as well as a basic rendering of
xAPI in Z Notation — are located in a master doc
<​https://github.com/yetanalytics/dave/blob/master/docs/main.pdf​>.

Yet Analytics implemented the concepts described in the algorithm documentation in the
Clojure(Script) and Datascript languages.

DAVE runs on both the Java Virtual Machine ​(​JVM) and JavaScript environments.

The DAVE data model and object hierarchy was implemented in Clojure(Script) and the unit
and generative testing facilities were implemented in Clojure(Script).

Yet Analytics generated multiple datasets using the Data and Training Analytics Simulated
Input Modeler (​DATASIM​) to aid in the iterative creation and testing of the product and in the
release of the reference model. This simulation tool was designed to generate realistic xAPI
Statement datasets from a conformant xAPI Profile, a set of Actors, and alignments between
the Actors and components of the Profile.

The DAVE user interface includes:

● a ​library​ (which is the user’s homepage and which contains all of the user’s
workbooks)

● workbooks​ (which contain all of a user’s analyses)
● and ​analyses​ (which include query code, visualization code, and portable data

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 4

https://github.com/yetanalytics/dave/blob/master/docs/main.pdf
https://github.com/yetanalytics/datasim

visualizations)

The beta version of the interactive front-end includes viewable components for the DAVE
object hierarchy and schema. The user is provided access to the data source. And as part of
the new Analysis editor, both the data transforms and visualization specifications are available
in the reference UI.

As of the beta release, DAVE workbooks include user interface elements to allow CRUD
(​create, read, update, and delete) ​operations on DAVE workbooks and on DAVE objects.

Yet Analytics implemented an HTML5 browser path navigation against the DAVE hierarchy,
implemented a user “toast”-style notification system, and implemented live instrumentation
testing of DAVE functions in a browser environment.

As a feature of the Analysis engine, validation and related feedback from both transform syntax
and visualization specification inputs are available in the reference UI. Live debugging facilities
were added to the​ ​DAVE browser development environment and were implemented as browser
local storage persistence for DAVE workbooks with schema validation.

The updated beta user experience of the dataflow graph follows the rule of: Data Source -->
Analysis, whereas the user chooses a data source, and is brought to an interface to edit both
the Transforms and Visualization. In previous iterations of the Framework, the flow was ​Data
Source --> Function --> Visualization​, and the Function and Visualization were contained inside
a Question. The concepts of Function and Question have been deprecated.

Yet Analytics implemented a dynamic chart display using the open source Vega visual grammar
specification and the vega.js rendering API.

A base version of the UX/UI styling and visual language from the DAVE user experience
mockups was applied to the prototype and a JavaScript build suitable for use on Github Pages
was deployed during alpha in late December 2018 and is the current environment of the DAVE
reference model.

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 5

4. Accessing DAVE

The DAVE beta prototype will be available at ​https://yetanalytics.github.io/dave/​ ​in February
2020. Users will be able to access DAVE without the need for an account, as it runs entirely in
the user’s web browser. Changes users make are saved to browser local storage, so they are
persistent.

Developers wishing to run the DAVE development environment (or the tests) should see the
project README: ​https://github.com/yetanalytics/dave/blob/master/README.md​.

5. Reference Datasets

In order to assess the usability of DAVE, sufficient amounts of relevant xAPI Profile-conformant
xAPI data are required. For this reason, the Data and Training Analytics Simulated Input
Modeler (​DATASIM​) was used to generate xAPI data from multiple profiles. This data was
ingested and processed by the DAVE Framework to produce visualizations and draw
conclusions.

As a baseline, and for high volume data generation, cmi5 was chosen. This allowed us to use a
commonly applied Profile to show DAVE assessment use cases and test DAVE’s current
performance capabilities.

For xAPI Profile Analysis through DAVE, we used data generated from the Tactical Combat
Casualty Care Course (TCCC) Profile Subset.

The applicable subset of the TC3 xAPI Profile can be found here:

https://github.com/yetanalytics/datasim/blob/tc3_profile/dev-resources/profiles/tccc/cuf_hc_vide
o_and_asm_student_survey_profile.jsonld

The TCCC CUF HC xAPI Profile is

● scoped to ​TCCC CUF HC​ and ​TCCC ASM​ content available from the ​deployed medicine
website

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 6

https://yetanalytics.github.io/dave/
https://github.com/yetanalytics/datasim
https://github.com/yetanalytics/datasim/blob/tc3_profile/dev-resources/profiles/tccc/cuf_hc_video_and_asm_student_survey_profile.jsonld
https://github.com/yetanalytics/datasim/blob/tc3_profile/dev-resources/profiles/tccc/cuf_hc_video_and_asm_student_survey_profile.jsonld
https://deployedmedicine.com/market/11/content/30
https://deployedmedicine.com/market/171
https://deployedmedicine.com/
https://deployedmedicine.com/

● partially derived from the ​xAPI Video CoP profile
● designed for programmatic generation of diverse xAPI datasets; datasets which include

a multitude of emergent and repeatable patterns of behavior; behavior modeled within
this profile as statement templates and patterns.

6. Beta Implementation

6.1 Analysis

In previous iterations of the DAVE Framework, data transforms and the filtering of xAPI data
was conducted through the use of a “Question”. The Question was tied to a specific predefined
algorithm — a Function — which could be reused. An option for expansion in that model is that
this list of Functions could be expanded to include many practical use cases, but the model
requires code to be added to DAVE to perform the transforms. In this way, at its core, the
framework was not dissimilar from a traditional analytics dashboard solution.

In this beta update, the desire was to break away from that model entirely and empower the end
user to enact their own functions on the fly. By putting the power of filtering, transformation, and
aggregation at the user’s disposal, this interaction allows a user to account for any possible
use-case.

As a result, the concepts of “Question” and “Function” were deprecated in DAVE in order to
remove ambiguity. The new concept being introduced has been named “Analysis”. An
“Analysis” consists of a Transform input and a Visualization input, each in their respective
syntaxes.

The old interaction, from a user perspective, followed a “Wizard” design pattern, wherein the
user picks various options along successive pages until a result is generated. The new model
follows a pattern much more analogous to a REPL (read-eval-print loop), as the output is shown
beside the evaluated inputs and iterative small changes can be seen by modifying the inputs.
The resulting user experience is much more conducive to the prototyping of data visualizations.

6.2 Visualization Syntax (Vega)

While the work performed for the DAVE Framework does not prescribe a specific visualization
engine for all applications of DAVE, it was necessary for implementation of the Beta and for a

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 7

https://github.com/adlnet/xapi-authored-profiles/blob/master/video/v1.0.3/video.jsonld

demonstration of framework capabilities to select a compatible visualization engine. For the
Visualization Syntax input to the Analysis concept, the requirements are as follows:

● Accept data inputs compatible with DAVE transform outputs (JSON)

● Generate visualizations on-the-fly, in-browser, with a portable specification

● Generate a large variety of visualization types, and offer specification-based options for
the comprehensive customization of each visualization type

For these reasons, for the beta update to the DAVE Framework, Vega was selected as the 1

Visualization Syntax. The Vega project is described as “a visualization grammar — a declarative
language for creating, saving, and sharing interactive visualization designs”. Vega’s inputs are a
JSON-based visualization syntax, and JSON-based data inputs. The outputs are visualizations
in Canvas or SVG. Refer to ​Section 9.2 ​for a generic example of the Vega visualization syntax.

6.3 Data Transformation Concepts (DAVE Primitives)

The next part of updating the DAVE Framework from a collection of Functions into a utility
capable of producing data outputs and visualizations for any learning analytics needs is the
addition of some conceptual components establishing a common language for xAPI data
transformation.

The shape that these components take is Operations, Primitives and Algorithms. Primitives are
comprised of Operations and Algorithms are comprised of Primitives. The focus of this work was
to define the properties of and interactions between Operations, Primitives and Algorithms in a
general way which doesn’t place unnecessary bounds on their range of possible functionality
with respect to processing xAPI data.

Many of these transforms (especially Operations) are already implemented in programming
and/or query languages because they are so essential, though it may be by a different name.

For these conceptual parts of the DAVE Framework, Z Notation was used to separate the
transform itself from any given language or proprietary representation.

1 https://vega.github.io/vega/

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 8

With these building blocks, an analyst can take an xAPI dataset and answer a new research
question without having to rely on previously-defined Functions. They may then visualize the
output in the DAVE Framework.

6.3.1 Operations

An Operation is a function of arbitrary arguments and is defined using Z Notation. The use
cases of these operations are explored in ​Section 4​ of the accompanying ​DAVE Learning
Analytics Algorithms​ specification.

An example of such an Operation is ​first ​which, as its name implies, takes the first element from
an ordered collection of elements. If we ran ​first​ on the following collection:

[“A”, “B”, “C”] -> ​first​ -> “A”.

Some other common Operations include:

first

second

succ

min

max

count

concatenation

rev

head

last

tail

front

extraction

filtering

distributed concatenation

disjoint

partition

bag scaling

bag union

bag diff

items

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 9

https://github.com/yetanalytics/dave/blob/master/docs/main.pdf
https://github.com/yetanalytics/dave/blob/master/docs/main.pdf

6.3.2 Primitives

Primitives allow users to break down the transformations, aggregations, and calculations
required to reach a solution into discrete steps. Primitives are composed of Operations and
other Primitives. They can be chained together to produce a desired Algorithm.

An example of a Primitive is ​Get[V, Collection]​, which is a retrieval of a ​V​ located at ​id?​ within
in?​ where ​in?​ can be a Collection or Key-Value.

6.3.3 Algorithms

An Algorithm is a composition of Primitives that accomplish a specified analysis goal. Algorithms
have component steps, each being defined by Primitives and Operations, and the steps are
meant to be a guide to how to look at data transforms in an xAPI context. For an example of a
fully explored Algorithm refer to ​Section 9​ of the accompanying ​DAVE Learning Analytics
Algorithms​ specification.

6.4 Data Transform Input Syntax (Datalog)

While Operations, Primitives and Algorithms define an implementation-agnostic way of
describing transformations and aggregates of xAPI Statements, they do not fully address the
practical matter of implementation syntax.

The Z Notation format of Primitives works well for defining capability, but inputting Z Notation
into every query is cumbersome and unintuitive to an end user. Furthermore, existing filter and
transform languages could be expanded to include xAPI Primitive functionality while retaining
their existing capabilities. As mentioned, most programming and query languages implement
the majority of the base Operations out of the box.

The unique challenge presented by this part of the DAVE Framework is that while many existing
database protocols fit the needs of the project from a syntax perspective, they are typically tied
to their proprietary database storage format. It would, for example, be straightforward to persist
xAPI statements in a specific database engine and then leverage the native query protocol of
that engine to perform similar transforms and operations directly on that database.

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 10

https://github.com/yetanalytics/dave/blob/master/docs/main.pdf
https://github.com/yetanalytics/dave/blob/master/docs/main.pdf

Because of the JSON format of xAPI, the research on this part of the implementation of
transforms initially led to investigation of existing JSON-based document database formats and
protocols (including MongoDB and CouchDB). The limitation of that approach came down to
cross-LRS compatibility and the existing xAPI specification. The data would be required to be in
a proprietary storage format in order to use existing parsers and engines, and communication
with that data would have to be over proprietary protocols.

The correct solution instead calls for working with a sufficiently robust syntax, with room for
Primitive extension, and harnessing its power to perform transforms on any xAPI data stream
from any LRS. The reason this last part is so critical is that the xAPI specification defines a
standard for the retrieval of Statements over REST. If DAVE is to be flexible enough to have
broad applicability across the DoD — or across any complex enterprise — it must be able to
optimally handle a stream of xAPI statements from any source.

This research led to the implementation of Primitives within Datalog . 2

A Datalog query is declarative, logic-based, and runs rules and operations on a database of
facts. Datalog databases also commonly have the ability to express complex nested
relationships like those found in xAPI statements. Traversal to a specific field deep within a
statement, for instance, can be expressed as a rule and be reused in multiple queries.

The DataScript implementation of Datalog features the creation of easy to use custom 3

functions, both for filter and aggregate parts of the query. This feature makes implementing
Primitives as reusable functions within the Datalog syntax straightforward. What was
implemented for the DAVE beta implementation was an adaptation of DataScript made
specifically to process streaming xAPI statements. A big advantage is that it was adapted with
primitives built right into the language as callable functions.

7. Next Steps: Getting to TRL 6

This beta update of the DAVE Framework includes a live working and tested web application
for reference modeling purposes. It fully harnesses the power of completely custom
transforms joined to completely custom visualizations and provides a path for almost any

2 https://clojure.github.io/clojure-contrib/doc/datalog.html
3 https://github.com/tonsky/datascript

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 11

analysis possible on conformant xAPI Statements in any LRS. In the ability to generate the
full range of possible analysis on xAPI data, DAVE achieves a level of technical usability
commensurate with TRL 5.

In moving to TRL 6 and transition into the operational environments beyond, it will be
necessary to increase that usability for a more generalized business audience.

The alpha iteration of DAVE employed a guided wizard interaction which, while opinionated
and limiting in capability, did allow for the execution of stock Functions without the user
having intimate knowledge of the technologies at work. This beta iteration of the technology
made a tradeoff for vastly increased analytical capabilities at the expense of push-button
usage.

As it stands currently, the platform is geared toward analysts with at least some
understanding of the underlying data. As the platform is used and user interactions and pain
points are observed, the platform should evolve to aid user experience in its design. There
are a number of ways this can be accomplished.

● Editor tooltips and advancements in the transform and visualization editor screens
may be evolved to add code completion and contextual suggestions

● Syntax guides may be made more readily available at a user’s disposal
● A shared stakeholder library of query and visualization templates categorized by

domain and problem set could be created
○ This solution would fully leverage the Linked Data capabilities offered by xAPI

Profiles and supported by the xAPI Ontology and Profile Validation resources
— increasing the transition potential of every piece of the TLA that either
contributed to or took advantage of the resource set

○ This solution could vastly speed up the time-to-insight for learning analytics
and reporting across the DoD enterprise

The latter is the most useful way to increase platform usefulness, decrease the learning
curve, and to make the DAVE Framework more broadly applicable to DoD and Federal
Stakeholders. Two applications of this concept are explored in more detail in ​Sections 8.1
and 8.3​.

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 12

8. Opportunity for Further R&D

The last two years of DAVE research into xAPI data analytics has also uncovered some needs
unique to analytics capability and innovation within the context of the Total Learning
Architecture. The key (current) missing pieces in data analytics for the xAPI ecosystem for DoD
stakeholders include:

● the analytics template library mentioned above and the requisite validation tools for the
xAPI Profiles upon which the templates are based

● a reference architecture for the high volume scaling of “Big xAPI Data” analytics
● rule bundling for reusable xAPI analytical operations

With the inclusion of this work, DAVE becomes a complete suite of analytics and visualization
specifications and reference models which extend xAPI and Total Learning Architecture
capabilities to DoD ADL stakeholders and the enterprise data analytics space.

8.1 DAVE Analysis Template Library & xAPI Profiles

This update to the DAVE Framework has provided users with the ability to create a completely
new and custom Analysis for xAPI data from any LRS. This capability for custom filter and
aggregation over predefined functions opens the door for the sharing of Analysis templates
which can be reused and distributed across DoD and Federal Stakeholders.

The creation of DAVE Analysis templates and the associated infrastructure and Library for
DAVE users to build, share, edit, and repurpose DAVE Analyses will have the effect of rapidly
increasing the usefulness and flexibility of the technology. These analyses are performed
against data shaped by the Templates and Patterns of one or more xAPI Profiles.

Association with xAPI Profiles creates a natural path to reuse for a particular Analysis and
because xAPI Profiles are used to validate incoming statements, they can validate relevance to
a particular form of Analysis. Rather than always starting from scratch, or from a few centrally
developed stock templates, an individual analyst would have the ability to search the Library for
templates specific to the kind of reporting they need for a given project, primarily based on
which xAPI Profile Patterns and Templates their data is aligned to.

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 13

Additionally, in order to fully leverage xAPI Profiles as a guide to Analysis within the DAVE
Template Library, it is required that there be a consistent methodology to validate Statement
Templates and Patterns within xAPI Profiles. Currently there is no tool capable of traversing an
xAPI Profile to validate its conformance to the xAPI Profile specification. Furthermore, it has
been discovered that aspects of the current xAPI Ontology are broken and would make a
validator unable to leverage JSON-LD’s capabilities for traversal and validation of xAPI Profiles.
It is recommended that these issues be resolved in order to enable a properly Profile-aligned
Analysis Template Library.

8.2 High Volume Transform Scaling Reference Architecture

The architecture of this update to the DAVE Framework allows for the processing of large
streams of xAPI data and the resulting visualization of the output. The transforms are executed
through an adapted query processor which uses intelligent memory management to execute
Primitive operations on non-Datalog data source streams (which is why it is compatible with any
LRS). This capability could be expanded to allow scaling with any input data size. A combination
of intelligent memory management, the application of intelligent filters, and a horizontally scaled
parallel processing model has the potential to process the most extreme theoretical volumes
efficiently without going around the existing xAPI communication specification.

8.3 Rule Bundles

The syntax for the expression of DAVE Primitive transforms and Algorithms is a Datalog variant
and one of the major benefits of such a syntax is the use of Rules.

Within Datalog, and by extension within the DAVE transform syntax, Rules represent a
collection of operations that are bundled to be reused within an expression. The distinction here
is that rather than just templating and sharing the query and visualizations at the top level,
various internal techniques for filtering and aggregation specific the the xAPI community could
be made into reusable components. This would facilitate both higher productivity for analysts,
and a path to learn the analysis techniques themselves to apply to other analyses.

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 14

9. Appendix

9.1 DAVE Live Reference Implementation

To access the a DAVE Beta live reference implementation, proceed here
https://yetanalytics.github.io/dave/​. This deployment runs directly in a browser, and relies on
local browser storage, so compatibility issues should be minimal for any users wishing to
explore the implementation.

9.2 VEGA Syntax Example

{
 "autosize": "fit",
 "legends": [
 {
 "fill": "color"
 }
],
 "axes": [
 {
 "orient": "bottom",
 "scale": "x",
 "labelAngle": 60,
 "labelAlign": "left",
 "labelLimit": 112,
 "labelOverlap": true,
 "labelSeparation": -35
 },
 {
 "orient": "left",
 "scale": "y"
 }
],
 "width": 500,
 "scales": [
 {
 "name": "x",

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 15

https://yetanalytics.github.io/dave/

 "type": "time",
 "range": "width",
 "domain": {
 "data": "result",
 "field": "?x"
 }
 },
 {
 "name": "y",
 "type": "linear",
 "range": "height",
 "nice": true,
 "zero": true,
 "domain": {
 "data": "result",
 "field": "?y"
 }
 },
 {
 "name": "color",
 "type": "ordinal",
 "range": "category",
 "domain": {
 "data": "result",
 "field": "?c"
 }
 }
],
 "padding": 5,
 "marks": [
 {
 "type": "group",
 "from": {
 "facet": {
 "name": "series",
 "data": "result",
 "groupby": "?c"
 }
 },
 "marks": [
 {
 "type": "symbol",
 "from": {
 "data": "series"

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 16

 },
 "encode": {
 "enter": {
 "size": {
 "value": 50
 },
 "x": {
 "scale": "x",
 "field": "?x"
 },
 "y": {
 "scale": "y",
 "field": "?y"
 },
 "fill": {
 "scale": "color",
 "field": "?c"
 }
 }
 }
 }
]
 }
],
 "$schema": "https://vega.github.io/schema/vega/v4.json",
 "signals": [
 {
 "name": "interpolate",
 "value": "linear"
 }
],
 "height": 200
}

9.3 DAVE Query Syntax Documentation
The basics of the DAVE Query language, and all of the provided xAPI functionality, are
documented on github ​here​.

From that document, you can learn how Datalog works, learn how to address xAPI attributes in
a query, and how to apply math functions to a transform.

Yet Analytics, Inc. 201 E. Baltimore St., Ste. 630, Baltimore, MD 21202 USA 17

https://github.com/yetanalytics/dave/blob/master/QUERY.md

	Technical Report-DAVE February 2020 w cp
	ADL Cover Page_DAVE 2.pdf

	sf298_DAVE_Final_Report
	Technical Report-DAVE February 2020 w cp
	DAVE Final Report February 2020.pdf

