Skip to main content
U.S. flag

An official website of the United States government

Joint Inference for Mode Identification in Tutorial Dialogues

2016; COLING, Conference on Computational Linguistics; Deepak, V.; Vasile, R.

Identifying dialogue acts and dialogue modes during tutorial interactions is an extremely crucial sub-step in understanding patterns of effective tutor tutee interactions. In this work, we devel opa novel joint inference method that labels each utterance in a tutoring dialogue session with a dialogue act and a specific mode from a set of pre-defined dialogue acts and modes, respectively. Specifically, we develop our joint model using Markov Logic Networks (MLNs), a framework that combines first-order logic with probabilities, and is thus capable of representing complex, uncertain knowledge. We define first-order formulas in our MLN that encode the interdependencies between dialogue modes and more fine-grained dialogue actions. We then use a joint inference to jointly label the modes as well as the dialogue acts in an utterance. We compare our system against a pipeline system based on SVMs on a real-world dataset with tutoring sessions of over 500 students. Our results show that the joint inference system is far more effective than the pipeline system in mode detection, and improves over the performance of the pipeline system by about 6 points in F1 score. The joint inference system also performs much better than the pipeline system in the context of labeling modes that highlight important pedagogical steps in tutoring.

Contract: W911QY-15-C-0070